The Ericsson Storage Rack Unit (SRU) is a high-density storage enclosure based on SAS 12G technologies. The SRU housing contains two Expansion Storage Modules (ESMs) that supports up to sixty 3.5” or 2.5” SAS drives including SSDs and HDDs. The SRU meets today’s high demands for volume-storage optimized applications such as object store, Hadoop and backup. It is also well suited for high capacity SAN/NAS applications.

The SRU is part of Ericsson Software Defined Infrastructure.
Features and benefits

— High density
— Volume-storage optimized

Enclosure
— Ericsson SRU with slide rail and cable management assembly is designed to house all the storage components within a standard 19” NEMA rack.
— Supports up to sixty 3.5” or 2.5” drives
— Supports two 2U half-width ESM (Expansion Storage Module)
— Supports two 2U half-width power supply units (PSUs) with integrated cooling fans
— Provides three front LEDs for enclosure status
— Includes slide rail and cable management arm (CMA)
— Contains all necessary EMI containment to ensure compliance
— 4U rack-mount option with slide rail and CMA for 1200 mm rack
— 5U rack-mount option with slide rail and CMA for 1000 mm rack

Storage drives
The SRU supports standard 3.5” or 2.5” top accessible HDD and SSD drives with SAS interfaces.

SAS interfaces connectivity
The redundant ESM board holds SAS expanders with dual 12Gb SAS 4x connections. Connection to Ericsson’s CRU (Compute Rack Unit) is done using mini-SAS HD cabling in single or dual path configurations. Up to four CRUs can be connected to the SRU.

Storage pooling
The SRU supports SAS zoning. By utilizing the SAS zoning features, you can assign individual storage drives to different compute systems.

Hardware management
Hardware management in-band using SCSI Enclosure Management (SES).

Mechanical replacement of drives
The SRU enclosure utilizes a custom drive carrier design to supporting hot insertion and removal of 3.5” and 2.5” drives. Two status LEDs per drive slot indicates “Activity” and “Locate”. Ejector handle allows for easy installation and removal of drives.

SRU 0101 Ericsson Software Defined Infrastructure

SRU 0101 is a hardware component in Ericsson Software Defined Infrastructure, which provides a common managed hardware pool for all workloads. The pool can be dynamically scaled and used to create multiple environments to enable fast service rollout, performance optimization and efficient hardware utilization.

Ericsson Software Defined Infrastructure key features include multi virtual-POD (vPOD), hardware management across the common hardware pool with an open, single integration point and independent of vendor. SRU 0101 is suitable to be integrated in a Software Defined Infrastructure system where the vPODs are using the common hardware pool to dynamically create sets of compute and storage hardware logically isolated from each other. The SRU 0101 together with a storage software verified by Ericsson, creates a software defined storage solution which can either provided as a dedicated storage solution within a vPOD, or as a centralized storage resource.

Based on the common hardware pool, vPODs can be used to deploy applications in cloud-, appliance-, container-, or bare metal environments. The pool can also be shared across organizations with tenant separation where each department has its own environment. The vPODs are used by operators to quickly set up multiple hardware environments to support various flavors of NFVI with optimized performance and utilization. This capability makes it possible to support the implementation of pre-development environments replicating the production environment, e.g. when introducing new applications. The benefits are fast deployment of new services, improved operational efficiency and better utilization of the hardware.
Specifications

Form factor
— 4U rack-mount with slide rail and CMA for 1200 mm rack
— 5U rack-mount option with slide rail and CMA for 1000 mm rack

Dimensions
— 16.69 W x 6.9 H x 33.38 D (inches)
— 424 W x 175.4 H x 848 D (mm)

Weight
— 40 kg (empty)
— 90 kg (fully equipped)

Main features
— 2x Mini SAS HD port for each ESM for connection via Mini SAS HD cable
— 12G SAS technology
— Up to 60 2.5”/3.5” drives supported
— 7.2K/10K/15K RPM SAS HDD
— SAS SSD
— 12Gbps/6Gbps/3Gbps drives
— SATA support
— SCSI Enclosure Service (SES)
— Enclosure Health Monitor
— Enclosure Cooling Control
— Drive Spin Up Control
— SAS Zoning Management
— System Event Log
— Online Firmware Update
— Supports hot-swappable ESM, PSU and drives
— Supports LED indicator, CMA and rail kits

Power
— 1200W, 80 plus gold
— Dual 1+1 redundant, hot swap Power Supply Unit (PSU)
— 100-240V AC input, auto ranging, 47~63Hz

Cooling
— 2 high performance fan module integrated in each PSU, front to rear system cooling
— Fan speed tuning by software
— N+1 redundant cooling: The system would continue operating when any one of the fans fail.

Environmental
— Operating temperature: 5˚C to 40˚C
— Non-operating temperature: -30˚C to 60˚C
— Humidity: 8% to 80% RH
— Operating altitude: 1000m at 35˚C
— Sound power (23+/-2˚C)<7.5 bels

Disclaimer: Specifications subject to change without notice.
Standards and regulations

<table>
<thead>
<tr>
<th>Functionality</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMC</td>
<td>EMC Directive, 2014/30/EU ETSI EN 300 386, Electromagnetic compatibility and Radio spectrum Matters (ERM); Telecommunications network equipment; ElectroMagnetic Compatibility (EMC)</td>
</tr>
<tr>
<td>Emission</td>
<td>CISPR 22/EN 55 022, 'Limits and Methods of Measurement of Radio Interference Characteristics on Information Technology Equipment IEC 61000-3-2, Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions (equipment input current ≤ 16 A per phase) IEC 61000-3-3, Electromagnetic compatibility (EMC) - Part 3-3: Limits - Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current ≤ 16 A per phase and not subject to conditional connection</td>
</tr>
<tr>
<td>Immunity</td>
<td>EN 61 000-4-2: Electrostatic Discharge Test</td>
</tr>
<tr>
<td></td>
<td>EN 61 000-4-3: Radiated Immunity Test</td>
</tr>
<tr>
<td></td>
<td>EN 61 000-4-4: Electrical Fast Transient / Burst Test</td>
</tr>
<tr>
<td></td>
<td>EN 61 000-4-5: Surge Immunity test</td>
</tr>
<tr>
<td></td>
<td>EN 61 000-4-6: Conducted Immunity Test</td>
</tr>
<tr>
<td></td>
<td>EN 61 000-4-11: Voltage dips, short interruptions, and voltage variations immunity tests</td>
</tr>
<tr>
<td>FCC 47 Part 15: subpart B</td>
<td>Unintentional radiators</td>
</tr>
<tr>
<td>RoHS</td>
<td>RoHS Directive, 2011/65/EU EN 50 821, Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances</td>
</tr>
</tbody>
</table>