CRU 0201
Compute Rack Unit
Ericsson Software Defined Infrastructure

Ericsson Compute Rack Unit 0201 (CRU 0201) is a general-purpose rackmount server equipped with dual CPUs based on Intel® Xeon® Scalable processor product families together with up to 3TB (128Gx24) memory in a 1U form factor. It can be managed independently as a POD or allocated to a central pool of resources from which they can be configured into software-defined virtual performance-optimized datacenters (vPODs).
Features and benefits

Latest Intel® processor technology
CRU 0201 will use the Intel® Xeon® Scalable processor family to provide the latest features on the market.

Open and redundant management
CRU 0201 uses Redfish compliant PSME RestAPI which is an Intel® Rack Scale Design compliant and open interface.
The Ericsson Command Center management system accesses the CRU 0201 out of band through the 1GE management ports.

High speed memory for demanding virtualization and cloud workloads
Up to 3 TB in 24 dual in-line memory module (DIMM) slots support memory-hungry virtualization environments with low latency.

Expansion slots
— 2 PCIe Gen3 x16 slots for LP2-MD2 standard PCIe card
— 1 PCIe Gen3 x8 slots for LP2-MD2 standard PCIe card

Flexible storage options
CRU 0201 provides twelve hot pluggable 2.5-inch slots which can be populated with up to two NVMe Drives or twelve SAS/SATA drives. The NVMe option provides ultra-fast data access suitable for caching and in-memory data bases. Internal HBA on mezzanine card PCIex16.

You can also use Ericsson Command Center to attach one or more Ericsson Storage Units (SRU) to the CRU through a high-speed SAS HBA 16*12Gbps. If you have configured the compute resources of the CRU into the common pool, you can add storage resources as part of a vPOD configuration.

Redundancy
The CRU 0201 is designed to support redundant configurations e.g. dual power supplies and control network ports.

More powerful with lower cooling costs
The CRU 0201 is designed for the extended temperature range 5-40 degrees Celsius. This in combination with the Intel® Xeon® Scalable processor family technology which increases performance and enhancing the power efficiency, makes it possible to overall lower the OPEX.

Faster networking across longer distances
Possibility to have single-mode optics gives CRU 0201 the capability to support networking across 25GE. It supports distances between resources longer than 500 meters with no significant latency.

CRU 0201 and Ericsson Software Defined Infrastructure
CRU 0201 is a hardware component in Ericsson Software Defined Infrastructure, which provides a common managed hardware pool for all workloads. The pool can be dynamically scaled and used to create multiple environments to enable fast service rollout, performance optimization and efficient hardware utilization.

Ericsson Software Defined Infrastructure key features include multi virtual-POD (vPOD), hardware management across the common hardware pool with an open, single integration point and independent of vendor.
CRU 0201 is suitable to be integrated in a Software Defined Infrastructure system where the vPODs are using the common hardware pool to dynamically create sets of compute and storage hardware logically isolated from each other.
Based on the common hardware pool, vPODs can be used to deploy applications in cloud-, appliance-, container-, or bare metal environments. The pool can also be shared across organizations with tenant separation where each department has its own environment. The vPODs are used by operators to quickly set up multiple hardware environments to support various flavors of NFVI with optimized performance and utilization. This capability makes it possible to support the implementation of pre-development environments replicating the production environment, e.g. when introducing new applications. The benefits are fast deployment of new services, improved operational efficiency and better utilization of the hardware.
Specifications

Form factor
- 1U rack unit

Dimensions sled

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>440 mm (full width)</td>
</tr>
<tr>
<td></td>
<td>17.3 inches (full width)</td>
</tr>
<tr>
<td>Height</td>
<td>1U (42mm)</td>
</tr>
<tr>
<td></td>
<td>1U (1.7 inches)</td>
</tr>
<tr>
<td>Depth</td>
<td>780 mm</td>
</tr>
<tr>
<td></td>
<td>30.7 inches</td>
</tr>
<tr>
<td>Weight</td>
<td>About 20 kg/44 lbs. for maximum configuration</td>
</tr>
</tbody>
</table>

Environmental
- Operating temperature: 5°C to 40°C (41°F to 104°F)
- Non-operating temperature: -40°C to 70°C (-40°F to 158°F)
- Operating relative humidity: 20% to 85% RH
- Non-operating relative humidity: 10% to 95% RH

Processor
- Processor type: Intel® Xeon® Scalable processor family
- Number of processors: 2
- Internal Interconnect: 10.4GT/s, 9.6GT/s
- L3 Cache: Depends on CPU SKU
- Maximum TDP support: 165W

Memory
- Total slots: 24 DIMM slots (12 per socket)
- Capacity: Up to 3.0 TB
- Memory type: DDR4 RDIMM or LRDIMM

Storage
- Type: 12 hot pluggable 2.5-inch slots which can be populated with up to 4 NVMe Drives or 12 SAS/SATA drives
- Interface: PCIe x 4 for SSD, SATA 6 Gbps for HDD and SSD, SAS 12Gbps for HDD and SSD

System management
- IPMI v2.0-compliant
- DCMI 1.0
- PSME

Remote system management
- IPMI v2.0-compliant
- DCMI 1.0
- SOL (Serial over LAN) over 1 GbE interface
- KVM (keyboard, video, mouse) over IP

Management interface
- 2 x 1 GbE infrastructure control channels
- 1 GbE out of band management
- 1 x RS232 serial port

Auxiliary interface
- 2 x USB 3.0 ports in rear

Firmware
- Legacy UEFI BIOS with fallback function

Security
- Trusted Platform Module (TPM) 2.0 supporting for Trusted Execution Technology (TXT)

Supported operating systems and virtualization software
- Ubuntu Server
- Red Hat Enterprise Linux (RHEL)
- VMware

Video
- Integrated AST2500 with 8MB DDR3 video memory, one VGA port in rear

Ethernet interface
- Configurable NICs through expansion slot
 - 4 x 10 GbE, 2 x 25 GbE or 2 x 40 GbE
 - High speed NICs to be added.

Expansion slots
- 1/2 PCIe Gen3 x16 slot for LP2-MD2 standard PCIe card
- 2/1 PCIe Gen3 x8 slots for LP2-MD2 standard PCIe card

Examples of configurable NICs and HBAs through expansion slots
- Eth NIC 2 x 10 GbE SFP+
- Eth NIC 2x 40 GbE (limited to 50 GbE traffic flow) QSFP+
- Eth NIC 2 x 25 GbE SFP28
- SAS HBA 16 x 12 Gbps, SAS mini HD connections

Power supply
- Redundant power supply
 - 100-240 VAC 2x 800 W PSU
 - -48 VDC 2x 1100 W PSU

Cooling
- 8 dual rotor fans (15 + 1 redundant)
Standards and regulations

<table>
<thead>
<tr>
<th>Standards</th>
<th>Compliance Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMC</td>
<td>EMC Directive, ETSI EN 300 386, Electromagnetic compatibility and Radio Spectrum Matters (ERM); Telecommunications network equipment Electromagnetic Compatibility (EMC) requirements</td>
</tr>
<tr>
<td>FCC 47 Part 15: subpart B Class A</td>
<td>Unintentional radiators</td>
</tr>
<tr>
<td>Safety</td>
<td>Low Voltage Directive 2014/35/EU IEC/EN 60 950-1: Safety of information technology equipment ANSI/UL 60 950-1:2 ed, Safety of Information technology Equipment UL/CSA C22. No. 60 950-1:2 ed, Safety of Information technology equipment</td>
</tr>
<tr>
<td>RoHS</td>
<td>RoHS Directive, 2011/65/EU EN 50 821, technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances</td>
</tr>
</tbody>
</table>