
The communications technology journal since 1924

OpenStack as the API framework for NFV:
the benefits, and the extensions needed
April 2, 2015

2015 • 3

OpenStack as the API
framework for NFV: the benefits,
and the extensions needed
Service providers are looking to Network Functions Virtualization (NFV) as a way to deliver and deploy
Virtual Network Functions (VNF) services in a flexible way, using virtualization and cloud computing
techniques. As an IaaS framework constructed as pluggable API components, OpenStack provides a
given level of automation and orchestration to deploy and provision NFV services. But is it enough, and
what improvements are needed?

and public clouds. In other words, a
large-scale and feature-rich API plug-
gable framework enabling automated
service deployment and provisioning.

The original OpenStack architecture
was modular, built with independent
components (services), called through
a REST-based API frontend. The initial
Rackspace/NASA release included just
two services: Nova – for managing com-
pute resource pools; and Swift – the
object storage system. The architecture
is still modular today, but as Figure 2
shows, it has grown with each release,
through the addition of new compo-
nents providing extra services in the
IaaS layer.

As an IaaS framework that is flexible
and API-driven, OpenStack offers ven-
dors and solution providers a means to
integrate their compute, network and
storage-infrastructure plugins best
suited to their environment. As such,
OpenStack enables end-to-end service
deployment, provisioning and orches-
tration, reducing implementation time
from weeks to hours. The core services
in OpenStack today include:

Horizon – a web-based service portal
that provides tenants and administra-
tors with a user interface for provision-
ing services such as VMs and object
storage, and other capabilities like
assigning IP addresses, and configuring
access control for provisioned services.

Nova – which is responsible for com-
pute services, such as scheduling, and
on-demand initiation of VMs, Linux

virtualization by providing an open-
source software service framework that
is API-driven and pluggable, enabling
public and private clouds to be quickly
deployed and managed effectively. A
high-level architecture of a telco cloud
service built using OpenStack is shown
in Figure 1.

The transformation to VNF services
and deployment scenarios needs an API
framework, and OpenStack is a suitable
candidate. However, to ensure carrier-
grade service and support for provision-
ing of NFV services, some extensions to
the set of APIs are needed, and the con-
cept as a whole needs to be embraced.

A modular architecture
In 2010, Rackspace and NASA jointly
launched the first release of OpenStack
distribution (Austin). Their aim was to
create an open-source cloud platform
that could provision computing, net-
working and storage services for private

 ALAN KAVANAGH

 BOX A � Terms and abbreviations

AMQP		 Advanced Message Queuing Protocol 	
API		 application programming interface
BIOS		 basic input/output system
CDN		 content delivery network
CEE		 Cloud Execution Environment
CLI		 command-line interface
CPU		 central processing unit
HOT		 Heat Orchestration Template
HTTPS		 Hypertext Transfer Protocol Secure
IaaS		 infrastructure as a service

KVM		 kernel-based virtual machine
libvirt		 virtualization API
NFV 		 Network Functions Virtualization
OVS		 open virtual switch
REST		 Representational State Transfer
TaaS		 tap as a service
TXT		 Trusted Execution Technology
VM		 virtual machine
VNF		 Virtual Network Functions
vNIC		 virtual network interface card

Both OpenStack and NFV have
developed considerably over
the past few years from an IS/
IT and a telecoms perspective.
While these two concepts relate
to similar areas – virtualization,
REST-based APIs, and providing
fast large-scale services
independent of underlying
hardware – they address these
areas from different angles.

On the one hand, ETSI NFV aims to
define an architecture and a set of inter-
faces so that physical network func-
tions, like routers, firewalls, CDNs and
telco applications, can be transformed:
from software applications designed to
run on specific dedicated hardware into
decoupled applications – called VNFs
– deployed on VMs or containers, on
generic servers.

OpenStack, on the other hand,
addresses service provisioning and

2

E R I C S S O N R E V I E W • APR L 2, 2015

A step toward efficient virtualization

Containers (LXC), or Docker containers,
as well as the removal of these services.

Neutron – which provides networking
as a service to other OpenStack compo-
nents (such as Nova). It does this by cre-
ating and attaching the virtual switch
port to the vNIC of the VM, assigning the
IP address, configuring network over-
lay for tenant isolation, and providing
network configuration for baremetal-
provisioned servers.

Swift – which provides multi-tenant
object storage with inherent replication
and automatic scaling. It manages large
volumes of unstructured data, which is
accessed through a RESTful API.

Cinder – which provides persistent
block storage for instances, such as a
VM, running on the OpenStack plat-
form. It also manages block storage
devices and volume snapshots.

Keystone – which provides authenti-
cation and authorization for OpenStack
services, tracking and authentication
of users, as well as authorization of the
services requested by a user (before the
service request is processed). This is a
common service used by all OpenStack
API servers.

Glance – which stores and retrieves
VM disk images and corresponding
metadata.

Heat – which provides orchestration
of services using Heat Orchestration
Templates (HOTs), which describe a
given cloud application and how it is
deployed using OpenStack.

Ironic – which provisions baremetal
machines using a PXE boot, for exam-
ple. By image provisioning baremetal
machines in an automated and orches-
trated way, Ironic can provide high per-
forming compute clusters, without
incurring the overheads and license fees
associated with hypervisors. This is a
significant advantage for applications
and services that perform high packet
processing, and require deterministic
performance as well as low latency.

Functional blocks
The core of each OpenStack service,
which is commonly referred to as the
controller, manages the given service.
Services like Nova and Neutron are
built on a pluggable architecture and
use an API web-based services fron-
tend for managing the controller. The
frontend is responsible for handling

authentication and authorization of API
calls via Keystone, as well as command
and control functions like request-
ing or deleting a VM or establishing
admin/user rights. As Figure 3 shows,
an OpenStack service calls another
OpenStack service through its north-
bound API. Initial service requests are
sent through a service portal, which can
be the default dashboard (Horizon), or
through a more enriched cloud man-
ager that interfaces with the north-
bound API of the OpenStack controllers.
Another method is to access each indi-
vidual OpenStack service directly via
the CLI, though this is most commonly
used for troubleshooting and advanced
administrator tasks.

For example, the Nova compute
controller comprises a set of services
including:

Nova Scheduler – which determines
where the compute service should be
instantiated;
Nova Conductor – which acts as a proxy
for requests;
Nova Compute Agent – which runs on
the compute blade; and
Nova database (db) – which stores most
build time data (resource availability,
consumption and state) for what
instances are running and which
compute blade they are running on.

The tasks these controller elements
carry out to complete a service request
are best described through the steps in
the process to deploy a VM – a common
task carried out by tenants logged on to
a (Horizon) service portal.

VM boot process
The API query for VM deployment is first
authenticated by Keystone. If success-
ful, the request is passed on to the Nova
Scheduler, which allocates a compute
blade for the VM, and then publishes
the request, via the message queue, to
the Nova Compute Agent.

The message queue is used for com-
munication between all OpenStack
daemons and uses AMQP – typically
implemented with RabbitMQ.

Depending on the hypervisor or con-
tainer solution being managed, the
Nova Compute daemon will call the
relevant plugin and the relevant API to
instantiate a VM, for example, via the
appropriate hypervisor. If the deployed
solution is a KVM hypervisor, the Nova
Compute Agent calls libvirt to instan-
tiate a VM, and then updates the Nova
db with the status of the requested VM.

Next, the Nova Compute Agent calls
Neutron API to provision and configure
the networking for the compute service.
This may include attaching the VM

OSS/BSS systems
Cloud and service

manager

A
P

I e
xp

o
su

re

A
n

al
yt

ic
s,

 p
o

lic
y,

 s
ec

u
ri

ty
 in

fr
as

tr
u

ct
u

re

VNF VNF VNF

Compute Networking Storage Telemetry

VNF VNF

OpenStack

Virtualization layer (KVM/OVS, networking, storage)

Network

 FIGURE 1 � Telco cloud service architecture on OpenStack

3

E R I C S S O N R E V I E W • APRIL 2, 2015

Pluggable architecture
The main advantage of OpenStack is the
pluggable nature of its framework archi-
tecture. As visualized in Figure 3, the
flexibility offered by such an architec-
ture allows service providers to choose
the best backend solutions, which can
be connected through the appropriate
plugin. Which vendor plugin is most
appropriate depends on the services the
cloud provider wants to offer, the infra-
structure being deployed, and the avail-
able vendor solutions.

Taking Neutron and Ericsson as an
example, an Ericsson Layer-2/Layer-3
solution would use the Ericsson
Neutron plugin. The pluggable archi-
tecture offers OpenStack Neutron a way
to extend its functionality with more
advanced networking solutions, such as
firewall, VPN, load balancing and port
mirroring, implemented as standalone
service plugins. In this way, networking
modules in Neutron can provide addi-
tional and much needed functionality
that can be selected and included in the
overall solution based on the require-
ments of the service provider.

The Nova-Docker plugin has been
recently developed to support the
deployment of Docker containers via
Nova Controller. While some VNFs take
advantage of containers, they are not a
complete replacement solution for VMs
or baremetal deployment, but provide
another deployment option that is suit-
able for some applications. In fact, as
more lightweight container solutions –
like Ubuntu’s LXD – become available,
the pluggable architecture of OpenStack
really comes into play. Deployment and
provisioning of the given container solu-
tion can be achieved by simply adding
the specific Nova plugin and calling the
OpenStack API to provision the VNF
with a specific deployment option.

The pluggable architecture is ideal
for VNFs that require specific network-
ing configuration, such as VLAN trunk-
ing, or advanced network services like
Layer-3 routing, as they require dynamic
routing protocols to be provisioned in
addition to multiple virtual routers.
However, support or full implementa-
tion for such advanced services is not yet
included in OpenStack, illustrating some
of the gaps that remain to be fulfilled by
Neutron to support all NFV deployment
and configuration scenarios.

to the network as well as allocation
of an IP address.

After network provisioning, Nova
Compute Agent calls Cinder API to
provision persistent block storage based
on tenant preferences.

Glance API is then called, and returns
the URL denoting where the VM image
file is stored in the backend object store,
which Nova Compute Agent uses to
download it. Once the image is installed
on the compute blade, the VM will boot.

The steps in this process indicate how
VNFs can be orchestrated, and auto-
matically provisioned and deployed,
using OpenStack services in a VM envi-
ronment. Provisioning of VNFs via
baremetal would also follow a simi-
lar process – which is supported by
Ironic. VNFs that require all available
resources on a given compute blade,
such as RAM, CPU cores, disk I/O and/

or full NIC bandwidth, are best suited
to be provisioned on baremetal – with-
out a hypervisor. In this case, the Nova
Compute uses a baremetal plugin to
call the Ironic API server that queries
the Ironic Conductor to fetch the image
files. Once Neutron has provisioned
and configured the required network-
ing, the baremetal node is deployed,
and PXE boot is initiated to retrieve
the VNF application until the node is
rebooted and up and running with the
VNF application.

For VNFs that are CPU heavy, mem-
ory intensive, and have high database
transaction frequency, the Ironic API
service is important. This is because it
provides automated deployment and
provisioning of the VNF or any applica-
tion on baremetal servers, and removes
the need for a hypervisor, which in turn
reduces operating costs and complexity.

Heat

Horizon

Neutron

Cinder Nova

VM

Glance

Orchestrates
cloud

Provides UI

Provides
images

Stores
images
in

Provisions

Monitors

Provides
authentication for

Provides
volumes for

Backs up volumes in

Provides network
connectivity for

Swift

Ceilometer

Keystone

 FIGURE 2 � OpenStack conceptual architecture

4

E R I C S S O N R E V I E W • APR L 2, 2015

A step toward efficient virtualization

What’s needed?
OpenStack provides an IaaS on-demand
cloud resource deployment and config-
uration service that enables VNFs to be
deployed quickly (within a matter of
minutes) on generic hardware through
automatic deployment and provision-
ing of VNFs in a cloud environment. The
benefits for NFV vendors and service
providers include:

faster time to market – reducing the
typical lead time from weeks to minutes;
elastic scaling of VNF services – which
results in maximum utilization of
hardware resources and reduces capex
and opex;
support for various compute resources
and flavors – offering several
deployment options such as baremetal,
containers, and hardware virtualization;
automated continuous deployment and
rolling upgrades; and
pluggable backends – allowing vendors
and service providers to provide
innovative solutions based on
deployment and service needs.

As an open-source project, OpenStack is
licensed under Apache 2.0 and, as such,

provides a basis to develop the necessary
plugins to support the provisioning and
deployment of a large number of VNFs,
and to develop extensions to API ser-
vices, that are needed to support vendor
and service provider VNFs.

Future challenges
When OpenStack began in 2010, the tar-
get market and predominant scenarios
addressed by the OpenStack commu-
nity focused on traditional three-tier
web services and web content host-
ing. Such services are typical for pub-
lic clouds, as they are well suited for
deployment on endpoint IP servers with
a small db using a hypervisor-type solu-
tion. Over time, the focus of OpenStack
has evolved to include support for:

telemetry services – Ceilometer;
an orchestration engine for
infrastructure life cycle management
– Heat;
big data – through the Sahara project,
which manages Hadoop clusters; and
advanced services in Neutron – such as
remote VPN access support, load
balancing and firewall as a service.

In 2013, Ericsson and AT&T started
to drive and include support for NFV
through several key contributions, such
as VLAN aware VMs, VLAN trunking,
dynamic logging, soft-affinity policy
for server groups in Nova and multi-
vNIC per VM. In addition, Ericsson
experts are core team members in the
Ceilometer and Barbican projects, as
well as a number of lead contributors
in projects such as the Telco Working
Group and Nova in OpenStack.

However, a number of key features are
still needed to enable NFV to embrace
OpenStack and the infrastructure com-
ponents it manages. This is where the
challenge lies ahead, together with pro-
viding assurance that OpenStack does
not result in service degradation, and
that it supports the necessary configura-
tion options to deploy VNF services from
different vendors. For the moment, fur-
ther development of some critical fea-
tures is required before NFV services
can be fully deployed and provisioned to
run reliably in a predictable and deter-
ministic manner.

One of the key features currently
under development relates to how

 FIGURE 3 � OpenStack functional architecture

API NFV extensions

Neutron API
Network service

Nova API
Compute service

Keystone APISwift
API

Cinder
API

Glance
API

Heat
API

Ceilometer
API

OS network
framework

Network connectivity
and virtualization

OpenStack
infrastructure

services
Compute Storage IDAM

(RBAC)

Plugin Plugin WMware
ESXi

Linux

KVM

Plugin Plugin Plugin Plugin Plugin EventsWorkflow
service

OS compute
framework

OS Keystone
framework

OS storage
framework

Heat
engine

Collector
central
agent

Standardized OpenStack northbound APIs

Physical infrastructure components

Proprietary interface

5

E R I C S S O N R E V I E W • APRIL 2, 2015

Nova determines where to place
an application – specifically, the use
case where a VNF requires a cluster of
machines, with individual applications
placed on different compute blades.
Such a setup can be achieved by setting
the ServerGroupAntiAffinityFilter pol-
icy. However, the anti-affinity concept
cannot be extended to network and stor-
age backends to address cases where
the VNF spans several storage pods.
Currently, Nova decides where a given
VNF application should be placed based
on simple weights and filters; it does not
take into consideration, for example,
that a VNF should run on a specific blade
with a dedicated storage drive.

A critical feature missing from
Neutron, for example, is support for
VLAN trunking, which is needed to
deploy and configure VNF services,
where the VNF has selected its own
VLAN ID – a typical feature for infra-
structure services – instead of using
the one assigned by Neutron. Support
for VLAN trunking is available in some
vendor solutions like the Ericsson
OpenStack CEE distribution, making
the most of the flexibility of OpenStack
to include vendor additions.

Work is ongoing to provide Layer-3
services in Neutron. This work is in
the form of providing support for

provisioning and configuring dynamic-
routing protocols, such as OSPF and
BGP – which are used for load balanc-
ing, dynamic route announcement and
route distribution among VNFs in a clus-
ter – and MPLS/BGP VPN – which is used
for inter data center VPN connectivity.

Yet another missing VNF service is
the capability to request provisioning
and configuration for virtual routers in
tenant networks. While IPv6 support
has been added in the last two release
cycles – Icehouse and Juno – feature
parity with IPv4 still requires the addi-
tion of a number of features. Similarly,
a number of capabilities are missing,
including:

the ability to set QoS per VNF service per
tenant;
fast detection and recovery of network
faults at the overlay layer;
port mirroring, which is used for
purposes such as troubleshooting; and
auditing and traceability services at the
different layers in the cloud stack.

Within the OpenStack community,
Ericsson is working on an implementa-
tion for port mirroring under the TaaS
project – contributing the source code
for the TaaS service.

Traceability tools are vital for locat-
ing service failures at various points

in large systems and for recovering
crashed services – particularly for vir-
tualization open source service com-
ponents like KVM and OVS that are
managed and interfaced by several
different OpenStack components.
Ericsson and other industry players
have added health checks and watch-
dogs to OpenStack components (like
libvirt) and layers (like KVM) outside
the OpenStack system, some pre-run-
time and runtime checks still need to
be covered. For example, VNFs need to
have a no service interruption guaran-
tee to enable carrier grade services and
fast failover detection.

To authenticate API calls, OpenStack
uses rule-based access control and role-
based access control for authenticat-
ing user and tenant access within the
defined set of configured roles. Yet, a
number of threats remain, both in
OpenStack and in the underlay system
– which OpenStack does not control or
manage. In the Juno release, support
for encrypting metadata traffic, via
HTTPS, was included. Some services
such as boot attestation, host attesta-
tion and firmware validation, tend
to be performed outside the manage-
ment scope of OpenStack. These ser-
vices use, for example, Intel’s Trusted
Execution Technology (TXT) to ensure
their trustability by storing hash val-
ues on an attestation server. These val-
ues are then queried, for example, after
a baremetal blade has been returned to
the Ironic pool before being made avail-
able to other tenants, to attest and verify
that hardware and software BIOS and
firmware have not been tampered with.
This is an essential feature for VNFs to
ensure they are provisioned and run in
a secure environment. The ability to val-
idate that physical resources continue to
operate as expected is yet another essen-
tial feature. OpenStack lacks the capa-
bility to check that resources are still
functional before providing them to a
tenant. For example, the ability to check
that SSD drives are still functional on
assigned blades before the Ironic service
allocates them to a tenant is missing.

As an essential component for guar-
anteeing service assurance, SLAs enable
VNFs to run in a predictable environ-
ment. As such, SLAs are an essential
element of assuring that VNFs run in
a deterministic environment, so that

App

Bin/libs

App App

Bin/libs

App

Bin/libsBin/libs

Guest
OS

Host OS Host OS Host OS

Hypervisor

VM

VM Container Baremetal

Container Container

Server ServerServer

 FIGURE 4 � VNF deployment options

A step toward efficient virtualization

6

E R I C S S O N R E V I E W • APR L 2, 2015

A step toward efficient virtualization

a dedicated number of CPU cores (CPU
core pinning) can be assigned to VNFs,
memory allocation is guaranteed, and
sufficient page table sizes are reserved
among other features one would require
for providing carrier-grade functional
control for VNF provisioning.

Conclusion
OpenStack is still evolving and will
take time to mature. New features and
extensions designed to address the spe-
cific requirements of NFV in telco and
enterprise use cases will enable NFV ser-
vices to be provisioned and deployed.
This will, however, require a number
of future releases. While some devel-
opment work still needs to be carried
out by the OpenStack community to
support all the necessary features and
ensure that OpenStack is carrier grade,
its extendable and pluggable services
framework provides vendors and ser-
vice providers with a flexible solution
for interfacing a multitude of plugins
and backend solutions.

A large number of solutions may
be developed to suit service provider
needs, and so a certification program is
required to ensure which plugins and
infrastructure blocks are connected
and NFV certified.

7

E R I C S S O N R E V I E W • APRIL 2, 2015

Alan Kavanagh

 is a cloud system architect
expert working in Development
Unit Networks & Cloud,
Systems and Technology. He
has over 15 years’ experience in

fixed and mobile broadband networks in the
areas of standardization, system design and
R&D. Over the past number of years he has
been working on designing and building
innovative solutions related to cloud
computing in the areas of OpenStack, NFV
and PaaS. He holds a B.A. in computer and
electronic engineering, and a B.A.I. in
mathematics from Trinity College Dublin
(TCD), Ireland.

OpenStack community and projects:
http://www.openstack.org

�Additional information

Ericsson
SE-164 83 Stockholm, Sweden
Phone: + 46 10 719 0000

ISSN 0014-0171
284 23-3254 | Uen

© Ericsson AB 2015

To bring you the
best of Ericsson’s
research world, our
employees have been
writing articles for
Ericsson Review –
our communications
technology journal
– since 1924. Today,
Ericsson Review
articles have a two-to
five-year perspective

and our objective is to provide you with up-to-
date insights on how things are shaping up for
the Networked Society.

Address :
Ericsson
SE-164 83 Stockholm, Sweden
Phone: +46 8 719 00 00

Publishing:
Additional Ericsson Review material and articles
are published on: www.ericsson.com/review.
Use the RSS feed to stay informed of the latest
updates.

Ericsson Technology Insights
All Ericsson Review articles are
available on the Ericsson Technology
Insights app available for Android
and iOS devices. The link for your

device is on the Ericsson Review website:www.
ericsson.com/review. If you are viewing this
digitally, you can:
download from Google Play or
download from the App Store

Publisher: Ulf Ewaldsson

Editorial board:
Joakim Cerwall, Stefan Dahlfort,
Åsa Degermark, Deirdre P. Doyle,
Björn Ekelund, Dan Fahrman, Anita Frisell,
Jonas Högberg, Geoff Hollingworth,
Patrick Jestin, Cenk Kirbas, Sara Kullman,
Börje Lundwall, Hans Mickelsson, Ulf Olsson,
Patrik Regårdh, Patrik Roséen, Gunnar Thrysin,
and Tonny Uhlin.

Editor:
Deirdre P. Doyle
deirdre.doyle@jgcommunication.se

Subeditor:
Ian Nicholson

Art director and layout:
Carola Pilarz

Illustrations:
Claes-Göran Andersson

ISSN: 0014-0171

Volume: 92, 2015

https://play.google.com/store/apps/details?id=com.ericsson&feature=search_result#?t=W251bGwsMSwxLDEsImNvbS5lcmljc3NvbiJd
https://itunes.apple.com/se/app/id668627885

