
The communications technology journal since 1924

OpenStack as the API framework for NFV: 
the benefits, and the extensions needed
April 2, 2015

2015 • 3



OpenStack as the API 
framework for NFV: the benefits, 
and the extensions needed
Service providers are looking to Network Functions Virtualization (NFV) as a way to deliver and deploy 
Virtual Network Functions (VNF) services in a flexible way, using virtualization and cloud computing 
techniques. As an IaaS framework constructed as pluggable API components, OpenStack provides a 
given level of automation and orchestration to deploy and provision NFV services. But is it enough, and 
what improvements are needed? 

and public clouds. In other words, a 
large-scale and feature-rich API plug-
gable framework enabling automated 
service deployment and provisioning. 

The original OpenStack architecture 
was modular, built with independent 
components (services), called through 
a REST-based API frontend. The initial 
Rackspace/NASA release included just 
two services: Nova – for managing com-
pute resource pools; and Swift – the 
object storage system. The architecture 
is still modular today, but as Figure 2 
shows, it has grown with each release, 
through the addition of new compo-
nents providing extra services in the 
IaaS layer. 

As an IaaS framework that is flexible 
and API-driven, OpenStack offers ven-
dors and solution providers a means to 
integrate their compute, network and 
storage-infrastructure plugins best 
suited to their environment. As such, 
OpenStack enables end-to-end service 
deployment, provisioning and orches-
tration, reducing implementation time 
from weeks to hours. The core services 
in OpenStack today include:

Horizon – a web-based service portal 
that provides tenants and administra-
tors with a user interface for provision-
ing services such as VMs and object 
storage, and other capabilities like 
assigning IP addresses, and configuring 
access control for provisioned services.

Nova – which is responsible for com-
pute services, such as scheduling, and 
on-demand initiation of VMs, Linux 

virtualization by providing an open-
source software service framework that 
is API-driven and pluggable, enabling 
public and private clouds to be quickly 
deployed and managed effectively. A 
high-level architecture of a telco cloud 
service built using OpenStack is shown 
in Figure 1.

The transformation to VNF services 
and deployment scenarios needs an API 
framework, and OpenStack is a suitable 
candidate. However, to ensure carrier-
grade service and support for provision-
ing of NFV services, some extensions to 
the set of APIs are needed, and the con-
cept as a whole needs to be embraced. 

A modular architecture 
In 2010, Rackspace and NASA jointly 
launched the first release of OpenStack 
distribution (Austin). Their aim was to 
create an open-source cloud platform 
that could provision computing, net-
working and storage services for private 
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 BOX A �  Terms and abbreviations

AMQP		  Advanced Message Queuing Protocol 	
API		  application programming interface
BIOS		  basic input/output system
CDN		  content delivery network
CEE		  Cloud Execution Environment
CLI		  command-line interface
CPU		  central processing unit
HOT		  Heat Orchestration Template
HTTPS		  Hypertext Transfer Protocol Secure
IaaS		  infrastructure as a service

KVM		  kernel-based virtual machine
libvirt		  virtualization API
NFV 		  Network Functions Virtualization
OVS		  open virtual switch
REST		  Representational State Transfer
TaaS		  tap as a service
TXT		  Trusted Execution Technology
VM		  virtual machine 
VNF		  Virtual Network Functions
vNIC		  virtual network interface card

Both OpenStack and NFV have 
developed considerably over 
the past few years from an IS/
IT and a telecoms perspective. 
While these two concepts relate 
to similar areas – virtualization, 
REST-based APIs, and providing 
fast large-scale services 
independent of underlying 
hardware – they address these 
areas from different angles. 

On the one hand, ETSI NFV aims to 
define an architecture and a set of inter-
faces so that physical network func-
tions, like routers, firewalls, CDNs and 
telco applications, can be transformed: 
from software applications designed to 
run on specific dedicated hardware into 
decoupled applications – called VNFs 
– deployed on VMs or containers, on 
generic servers. 

OpenStack, on the other hand, 
addresses service provisioning and 

2

E R I C S S O N  R E V I E W   • APR L 2, 2015

A step toward efficient virtualization



Containers (LXC), or Docker containers, 
as well as the removal of these services.

Neutron – which provides networking 
as a service to other OpenStack compo-
nents (such as Nova). It does this by cre-
ating and attaching the virtual switch 
port to the vNIC of the VM, assigning the 
IP address, configuring network over-
lay for tenant isolation, and providing  
network configuration for baremetal-
provisioned servers.

Swift – which provides multi-tenant 
object storage with inherent replication 
and automatic scaling. It manages large 
volumes of unstructured data, which is 
accessed through a RESTful API.

Cinder – which provides persistent 
block storage for instances, such as a 
VM, running on the OpenStack plat-
form. It also manages block storage 
devices and volume snapshots.

Keystone – which provides authenti-
cation and authorization for OpenStack 
services, tracking and authentication 
of users, as well as authorization of the 
services requested by a user (before the 
service request is processed). This is a 
common service used by all OpenStack 
API servers.

Glance – which stores and retrieves 
VM disk images and corresponding 
metadata.

Heat – which provides orchestration 
of services using Heat Orchestration 
Templates (HOTs), which describe a 
given cloud application and how it is 
deployed using OpenStack.

Ironic – which provisions baremetal 
machines using a PXE boot, for exam-
ple. By image provisioning baremetal 
machines in an automated and orches-
trated way, Ironic can provide high per-
forming compute clusters, without 
incurring the overheads and license fees 
associated with hypervisors. This is a 
significant advantage for applications 
and services that perform high packet 
processing, and require deterministic 
performance as well as low latency. 

Functional blocks 
The core of each OpenStack service, 
which is commonly referred to as the 
controller, manages the given service. 
Services like Nova and Neutron are 
built on a pluggable architecture and 
use an API web-based services fron-
tend for managing the controller. The 
frontend is responsible for handling 

authentication and authorization of API 
calls via Keystone, as well as command 
and control functions like request-
ing or deleting a VM or establishing 
admin/user rights. As Figure 3 shows, 
an OpenStack service calls another 
OpenStack service through its north-
bound API. Initial service requests are 
sent through a service portal, which can 
be the default dashboard (Horizon), or 
through a more enriched cloud man-
ager that interfaces with the north-
bound API of the OpenStack controllers. 
Another method is to access each indi-
vidual OpenStack service directly via 
the CLI, though this is most commonly 
used for troubleshooting and advanced 
administrator tasks.

For example, the Nova compute 
controller comprises a set of services 
including:

Nova Scheduler – which determines 
where the compute service should be 
instantiated; 
Nova Conductor – which acts as a proxy 
for requests;
Nova Compute Agent – which runs on 
the compute blade; and 
Nova database (db) – which stores most 
build time data (resource availability, 
consumption and state) for what 
instances are running and which 
compute blade they are running on. 

The tasks these controller elements 
carry out to complete a service request 
are best described through the steps in 
the process to deploy a VM – a common 
task carried out by tenants logged on to 
a (Horizon) service portal. 

VM boot process 
The API query for VM deployment is first 
authenticated by Keystone. If success-
ful, the request is passed on to the Nova 
Scheduler, which allocates a compute 
blade for the VM, and then publishes 
the request, via the message queue, to 
the Nova Compute Agent. 

The message queue is used for com-
munication between all OpenStack 
daemons and uses AMQP – typically 
implemented with RabbitMQ.

Depending on the hypervisor or con-
tainer solution being managed, the 
Nova Compute daemon will call the 
relevant plugin and the relevant API to 
instantiate a VM, for example, via the 
appropriate hypervisor. If the deployed 
solution is a KVM hypervisor, the Nova 
Compute Agent calls libvirt to instan-
tiate a VM, and then updates the Nova 
db with the status of the requested VM. 

Next, the Nova Compute Agent calls 
Neutron API to provision and configure 
the networking for the compute service. 
This may include attaching the VM 
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 FIGURE 1 �  Telco cloud service architecture on OpenStack 
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Pluggable architecture 
The main advantage of OpenStack is the 
pluggable nature of its framework archi-
tecture. As visualized in Figure 3, the 
flexibility offered by such an architec-
ture allows service providers to choose 
the best backend solutions, which can 
be connected through the appropriate 
plugin. Which vendor plugin is most 
appropriate depends on the services the 
cloud provider wants to offer, the infra-
structure being deployed, and the avail-
able vendor solutions. 

Taking Neutron and Ericsson as an 
example, an Ericsson Layer-2/Layer-3 
solution would use the Ericsson 
Neutron plugin. The pluggable archi-
tecture offers OpenStack Neutron a way 
to extend its functionality with more 
advanced networking solutions, such as 
firewall, VPN, load balancing and port 
mirroring, implemented as standalone 
service plugins. In this way, networking 
modules in Neutron can provide addi-
tional and much needed functionality 
that can be selected and included in the 
overall solution based on the require-
ments of the service provider.

The Nova-Docker plugin has been 
recently developed to support the 
deployment of Docker containers via 
Nova Controller. While some VNFs take 
advantage of containers, they are not a 
complete replacement solution for VMs 
or baremetal deployment, but provide 
another deployment option that is suit-
able for some applications. In fact, as 
more lightweight container solutions – 
like Ubuntu’s LXD – become available, 
the pluggable architecture of OpenStack 
really comes into play. Deployment and 
provisioning of the given container solu-
tion can be achieved by simply adding 
the specific Nova plugin and calling the 
OpenStack API to provision the VNF 
with a specific deployment option.

The pluggable architecture is ideal 
for VNFs that require specific network-
ing configuration, such as VLAN trunk-
ing, or advanced network services like 
Layer-3 routing, as they require dynamic 
routing protocols to be provisioned in 
addition to multiple virtual routers. 
However, support or full implementa-
tion for such advanced services is not yet 
included in OpenStack, illustrating some 
of the gaps that remain to be fulfilled by 
Neutron to support all NFV deployment 
and configuration scenarios.

to the network as well as allocation 
of an IP address. 

After network provisioning, Nova 
Compute Agent calls Cinder API to  
provision persistent block storage based 
on tenant preferences. 

Glance API is then called, and returns 
the URL denoting where the VM image 
file is stored in the backend object store, 
which Nova Compute Agent uses to 
download it. Once the image is installed 
on the compute blade, the VM will boot. 

The steps in this process indicate how 
VNFs can be orchestrated, and auto-
matically provisioned and deployed, 
using OpenStack services in a VM envi-
ronment. Provisioning of VNFs via 
baremetal would also follow a simi-
lar process – which is supported by 
Ironic. VNFs that require all available 
resources on a given compute blade, 
such as RAM, CPU cores, disk I/O and/

or full NIC bandwidth, are best suited 
to be provisioned on baremetal – with-
out a hypervisor. In this case, the Nova 
Compute uses a baremetal plugin to 
call the Ironic API server that queries 
the Ironic Conductor to fetch the image 
files. Once Neutron has provisioned 
and configured the required network-
ing, the baremetal node is deployed, 
and PXE boot is initiated to retrieve 
the VNF application until the node is 
rebooted and up and running with the 
VNF application. 

For VNFs that are CPU heavy, mem-
ory intensive, and have high database 
transaction frequency, the Ironic API 
service is important. This is because it 
provides automated deployment and 
provisioning of the VNF or any applica-
tion on baremetal servers, and removes 
the need for a hypervisor, which in turn 
reduces operating costs and complexity.
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 FIGURE 2 �  OpenStack conceptual architecture
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What’s needed? 
OpenStack provides an IaaS on-demand 
cloud resource deployment and config-
uration service that enables VNFs to be 
deployed quickly (within a matter of 
minutes) on generic hardware through 
automatic deployment and provision-
ing of VNFs in a cloud environment. The 
benefits for NFV vendors and service 
providers include:

faster time to market – reducing the 
typical lead time from weeks to minutes; 
elastic scaling of VNF services – which 
results in maximum utilization of 
hardware resources and reduces capex 
and opex;
support for various compute resources 
and flavors – offering several 
deployment options such as baremetal, 
containers, and hardware virtualization;
automated continuous deployment and 
rolling upgrades; and
pluggable backends – allowing vendors 
and service providers to provide 
innovative solutions based on 
deployment and service needs.

As an open-source project, OpenStack is 
licensed under Apache 2.0 and, as such, 

provides a basis to develop the necessary 
plugins to support the provisioning and 
deployment of a large number of VNFs, 
and to develop extensions to API ser-
vices, that are needed to support vendor 
and service provider VNFs. 

Future challenges 
When OpenStack began in 2010, the tar-
get market and predominant scenarios 
addressed by the OpenStack commu-
nity focused on traditional three-tier 
web services and web content host-
ing. Such services are typical for pub-
lic clouds, as they are well suited for 
deployment on endpoint IP servers with 
a small db using a hypervisor-type solu-
tion. Over time, the focus of OpenStack 
has evolved to include support for: 

telemetry services – Ceilometer;
an orchestration engine for 
infrastructure life cycle management 
– Heat;
big data – through the Sahara project, 
which manages Hadoop clusters; and 
advanced services in Neutron – such as 
remote VPN access support, load 
balancing and firewall as a service.

In 2013, Ericsson and AT&T started 
to drive and include support for NFV 
through several key contributions, such 
as VLAN aware VMs, VLAN trunking, 
dynamic logging, soft-affinity policy 
for server groups in Nova and multi-
vNIC per VM. In addition, Ericsson 
experts are core team members in the 
Ceilometer and Barbican projects, as 
well as a number of lead contributors 
in projects such as the Telco Working 
Group and Nova in OpenStack.

However, a number of key features are 
still needed to enable NFV to embrace 
OpenStack and the infrastructure com-
ponents it manages. This is where the 
challenge lies ahead, together with pro-
viding assurance that OpenStack does 
not result in service degradation, and 
that it supports the necessary configura-
tion options to deploy VNF services from 
different vendors. For the moment, fur-
ther development of some critical fea-
tures is required before NFV services 
can be fully deployed and provisioned to 
run reliably in a predictable and deter-
ministic manner. 

One of the key features currently 
under development relates to how 

 FIGURE 3 �  OpenStack functional architecture
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Nova determines where to place 
an application – specifically, the use 
case where a VNF requires a cluster of 
machines, with individual applications 
placed on different compute blades. 
Such a setup can be achieved by setting 
the ServerGroupAntiAffinityFilter pol-
icy. However, the anti-affinity concept 
cannot be extended to network and stor-
age backends to address cases where 
the VNF spans several storage pods. 
Currently, Nova decides where a given 
VNF application should be placed based 
on simple weights and filters; it does not 
take into consideration, for example, 
that a VNF should run on a specific blade 
with a dedicated storage drive.

A critical feature missing from 
Neutron, for example, is support for 
VLAN trunking, which is needed to 
deploy and configure VNF services, 
where the VNF has selected its own 
VLAN ID – a typical feature for infra-
structure services – instead of using 
the one assigned by Neutron. Support 
for VLAN trunking is available in some 
vendor solutions like the Ericsson 
OpenStack CEE distribution, making 
the most of the flexibility of OpenStack 
to include vendor additions. 

Work is ongoing to provide Layer-3 
services in Neutron. This work is in 
the form of providing support for 

provisioning and configuring dynamic-
routing protocols, such as OSPF and 
BGP – which are used for load balanc-
ing, dynamic route announcement and 
route distribution among VNFs in a clus-
ter – and MPLS/BGP VPN – which is used 
for inter data center VPN connectivity. 

Yet another missing VNF service is 
the capability to request provisioning 
and configuration for virtual routers in 
tenant networks. While IPv6 support 
has been added in the last two release 
cycles – Icehouse and Juno – feature 
parity with IPv4 still requires the addi-
tion of a number of features. Similarly, 
a number of capabilities are missing, 
including: 

the ability to set QoS per VNF service per 
tenant; 
fast detection and recovery of network 
faults at the overlay layer; 
port mirroring, which is used for 
purposes such as troubleshooting; and
auditing and traceability services at the 
different layers in the cloud stack.

Within the OpenStack community, 
Ericsson is working on an implementa-
tion for port mirroring under the TaaS 
project – contributing the source code 
for the TaaS service.

Traceability tools are vital for locat-
ing service failures at various points 

in large systems and for recovering 
crashed services – particularly for vir-
tualization open source service com-
ponents like KVM and OVS that are 
managed and interfaced by several 
different OpenStack components. 
Ericsson and other industry players 
have added health checks and watch-
dogs to OpenStack components (like 
libvirt) and layers (like KVM) outside 
the OpenStack system, some pre-run-
time and runtime checks still need to 
be covered. For example, VNFs need to 
have a no service interruption guaran-
tee to enable carrier grade services and 
fast failover detection. 

To authenticate API calls, OpenStack 
uses rule-based access control and role-
based access control for authenticat-
ing user and tenant access within the 
defined set of configured roles. Yet, a 
number of threats remain, both in 
OpenStack and in the underlay system 
– which OpenStack does not control or 
manage. In the Juno release, support 
for encrypting metadata traffic, via 
HTTPS, was included. Some services 
such as boot attestation, host attesta-
tion and firmware validation, tend 
to be performed outside the manage-
ment scope of OpenStack. These ser-
vices use, for example, Intel’s Trusted 
Execution Technology (TXT) to ensure 
their trustability by storing hash val-
ues on an attestation server. These val-
ues are then queried, for example, after 
a baremetal blade has been returned to 
the Ironic pool before being made avail-
able to other tenants, to attest and verify 
that hardware and software BIOS and 
firmware have not been tampered with. 
This is an essential feature for VNFs to 
ensure they are provisioned and run in 
a secure environment. The ability to val-
idate that physical resources continue to 
operate as expected is yet another essen-
tial feature. OpenStack lacks the capa-
bility to check that resources are still 
functional before providing them to a 
tenant. For example, the ability to check 
that SSD drives are still functional on 
assigned blades before the Ironic service 
allocates them to a tenant is missing.

As an essential component for guar-
anteeing service assurance, SLAs enable 
VNFs to run in a predictable environ-
ment. As such, SLAs are an essential 
element of assuring that VNFs run in 
a deterministic environment, so that 
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a dedicated number of CPU cores (CPU 
core pinning) can be assigned to VNFs, 
memory allocation is guaranteed, and 
sufficient page table sizes are reserved 
among other features one would require 
for providing carrier-grade functional 
control for VNF provisioning.

Conclusion 
OpenStack is still evolving and will 
take time to mature. New features and 
extensions designed to address the spe-
cific requirements of NFV in telco and 
enterprise use cases will enable NFV ser-
vices to be provisioned and deployed. 
This will, however, require a number 
of future releases. While some devel-
opment work still needs to be carried 
out by the OpenStack community to 
support all the necessary features and 
ensure that OpenStack is carrier grade, 
its extendable and pluggable services 
framework provides vendors and ser-
vice providers with a flexible solution 
for interfacing a multitude of plugins 
and backend solutions. 

A large number of solutions may 
be developed to suit service provider 
needs, and so a certification program is 
required to ensure which plugins and 
infrastructure blocks are connected 
and NFV certified.

7

E R I C S S O N  R E V I E W   •  APRIL 2, 2015

        

Alan Kavanagh   

 is a cloud system architect 
expert working in Development 
Unit Networks & Cloud, 
Systems and Technology. He 
has over 15 years’ experience in 

fixed and mobile broadband networks in the 
areas of standardization, system design and 
R&D. Over the past number of years he has 
been working on designing and building 
innovative solutions related to cloud 
computing in the areas of OpenStack, NFV 
and PaaS. He holds a B.A. in computer and 
electronic engineering, and a B.A.I. in 
mathematics from Trinity College Dublin 
(TCD), Ireland.

OpenStack community and projects: 
http://www.openstack.org 

�Additional information



Ericsson 
SE-164 83 Stockholm, Sweden
Phone: + 46 10 719 0000

ISSN 0014-0171 
284 23-3254 | Uen 

© Ericsson AB 2015

To bring you the 
best of Ericsson’s 
research world, our 
employees have been 
writing articles for 
Ericsson Review – 
our communications 
technology journal 
– since 1924. Today, 
Ericsson Review 
articles have a two-to 
five-year perspective 

and our objective is to provide you with up-to-
date insights on how things are shaping up for 
the Networked Society.

Address :
Ericsson
SE-164 83 Stockholm, Sweden
Phone: +46 8 719 00 00

Publishing:
Additional Ericsson Review material and articles 
are published on: www.ericsson.com/review. 
Use the RSS feed to stay informed of the latest 
updates. 

Ericsson Technology Insights
All Ericsson Review articles are 
available on the Ericsson Technology 
Insights app available for Android 
and iOS devices. The link for your 

device is on the Ericsson Review website:www.
ericsson.com/review. If you are viewing this 
digitally, you can:
download from Google Play or
download from the App Store

Publisher: Ulf Ewaldsson

Editorial board: 
Joakim Cerwall, Stefan Dahlfort,  
Åsa Degermark, Deirdre P. Doyle, 
Björn Ekelund, Dan Fahrman, Anita Frisell, 
Jonas Högberg, Geoff Hollingworth, 
Patrick Jestin, Cenk Kirbas, Sara Kullman, 
Börje Lundwall, Hans Mickelsson, Ulf Olsson,  
Patrik Regårdh, Patrik Roséen, Gunnar Thrysin,
and Tonny Uhlin.

Editor: 
Deirdre P. Doyle
deirdre.doyle@jgcommunication.se

Subeditor: 
Ian Nicholson

Art director and layout: 
Carola Pilarz 

Illustrations: 
Claes-Göran Andersson

ISSN: 0014-0171

Volume: 92, 2015

https://play.google.com/store/apps/details?id=com.ericsson&feature=search_result#?t=W251bGwsMSwxLDEsImNvbS5lcmljc3NvbiJd
https://itunes.apple.com/se/app/id668627885

