
Multistage OCDO: Scalable Security Provisioning
Optimization in SDN-based Cloud

Yosr Jarraya∗, Alireza Shameli-Sendi†, Makan Pourzandi∗ and Mohamed Cheriet‡
∗ Ericsson Security Research, Ericsson Canada, Montreal, Qc, Canada

† Department of Computer Science, McGill University, Montreal, Qc, Canada
‡ Synchromedia Lab, École de Technologie Supérieure (ETS), University of Quebec, Montreal, Qc, Canada

Emails: {yosr.jarraya, makan.pourzandi}@ericsson.com, alireza.shameli-sendi@cs.mcgill.ca, mohamed.cheriet@etsmtl.ca

Abstract—Cloud computing is increasingly changing the land-
scape of computing, however, one of the main issues that is
refraining potential customers from adopting the cloud is the
security. Network functions virtualization together with software-
defined networking can be used to efficiently coordinate different
network security functionality in the network. To squeeze the
best out of network capabilities, there is need for algorithms
for optimal placement of the security functionality in the cloud
infrastructure. However, due to the large number of flows to
be considered and complexity of interactions in these networks,
the classical placement algorithms are not scalable. To address
this issue, we elaborate an optimization framework, namely
OCDO, that provides adequate and scalable network security
provisioning and deployment in the cloud. Our approach is based
on an innovative multistage approach that combines together
decomposition and segmentation techniques to the problem of
security functions placement while coping with the complexity
and the scalability of such an optimization problem. We present
the results of multiple scenarios to assess the efficiency and the
adequacy of our framework. We also describe our prototype
implementation of the framework integrated into an open source
cloud framework, i.e. Openstack.

Keywords—Cloud; Security Provisioning; Optimization; Seg-
mentation; Decomposition; SDN; OpenStack;

I. INTRODUCTION

Security has been mentioned by many companies as the
major obstacle to a wide adoption of cloud in the enterprise IT
market. With advancements in virtualization, a growing interest
has been seen in replacing dedicated hardware-based network
functions (NFs), e.g., intrusion detection systems (IDSs), load
balancers, caching proxies, etc. with software-based NFs run-
ning on generic compute resources (e.g. commodity hardware
servers and switches). This new trend, known as network
functions virtualization (NFV) [1], intertwined with software-
defined networking (SDN) opens up great opportunities to
deliver new and innovative services. Software-based NFs can
be deployed at various locations in the data center, which
creates new possibilities to optimize network and computing
resources. Furthermore, SDN allows to program traffic flows
from a logically centralized controller. This allows for a
flexible distribution of traffic among network nodes and thus
fosters optimizing traffic steering at the switches and, more
importantly, at flows granularity. For medium to large data
centers, these two problems are known to be hard to solve [2],
[3], [4] and they have been generally addressed separately to
cope with the complexity of the compound problem.

Deployment of NFs are typically structured as logical
chains, a.k.a service chains defined as “the required func-
tions and associated order that must be applied to packets
and/or frames”[5]. Different flows may require heterogeneous
sequences of NFs in different orders as specified by flows
policies [6]. Enforcing the order of traversal, a.k.a. policy-
awareness [2], significantly increases the complexity of the
problem and has been generally considered hard to solve
within these optimization problems [3], [4]. Additionally, the
stateful nature of several NFs imposes more constraints to
the problem as bidirectional traffic of the same flow should
traverse the same stateful NF, which represents a critical
requirement for them to operate correctly [2].

In this paper, we propose an innovative approach to address
the problem of security functions provisioning in the data cen-
ter while being adequate and scalable. We mean by adequate
that the right security modules (SMs) are deployed based on
the tenant’s virtual application security needs, while respecting
the order of traversal and the correct processing of stateful
NFs. Our main contribution is to elaborate OCDO, Ordered
Cloud Defense Optimization algorithm, and a set of tech-
niques that synergistically combined together achieve a correct
provisioning of security while coping with the complexity
and the scalability of such an optimization problem. The first
technique, namely decomposition, leverages network topology
characteristics and fosters concurrent optimization. The second
technique, namely segmentation, relies on distributing the
availabilities of security functions among a set of network
nodes based on their semantics. The benefits of our approach
are manifold. Firstly, it takes into account simultaneously the
optimization of both computing and networking resources.
This allows achieving higher levels of efficiency. Secondly,
it adequately addresses the precedence requirements between
security functions and the steering of bidirectional traffic, par-
ticularly for the correct operation of stateful security modules.
Finally, our approach can scale to large data center topologies.
These benefits and how we achieve them will be detailed in
the paper.

The remaining part of this paper is organized as follows.
Section II presents the related works. Section III describes in
the problem that we intend to solve. Section IV presents the
mathematical formulation of OCDO, our optimization frame-
work. Section V describes our approach and its underlying
components, namely decomposition and segmentation. Section
VI briefly describes OCDO prototype and its integration into
OpenStack. Section VII is dedicated to present and discuss

2015 IEEE 8th International Conference on Cloud Computing

2159-6190/15 $31.00 © 2015 IEEE

DOI 10.1109/CLOUD.2015.82

572

the numerical results obtained by simulating our approach on
different use cases. Section VIII concludes the paper.

II. RELATED WORKS

Related works can be divided into three threads. The first
thread (e.g. [3], [7], [8], [9], [10], [11]) is assuming a fixed
number of middleboxes and the proposed approaches optimally
distribute the traffic flows among all possible routes through
them. For instance, compared to CoMb [3], we are aligned
with their distributed view of network security, however, we
do not force all middleboxes for the same session to run
on the same node, as this might be not suitable for certain
types middleboxes (eg. firewalls and load balancer need to be
deployed as clusters of active-standby pairs). We do require
a session to pass by the same nodes hosting stateful security
functions. A second thread (e.g. [12]) is assuming a set of
pre-defined routes within the network and propose optimal
placement of virtual middleboxes in the nodes through the
routes. However, this class of works do not benefit from the
dynamic flow forwarding offered by SDN. In a third thread,
to which our work subscribes, research initiatives (e.g. [2],
[4]) propose a hybrid approach where both computing and
networking resources optimization are considered. However,
in contrast with our work, the majority of studies propose
to address these problems (placement of middleboxes and
flows routing) separately, while we propose to address them
simultaneously. This has the benefit of discarding solutions
that would point out available computing resources but scarce
network resources. Furthermore, several works [3], [4] have
recognized that taking into account the order of traversing the
security modules makes the optimal placement problem NP-
hard. In this paper, we target to address the problem without
relaxing the order constraint while making it scalable.

III. PROBLEM STATEMENT

We assume a multi-tenant cloud data center with SDN.
Using NFV, security functions can be implemented as software
modules (SMs) deployed in the cloud infrastructure. These
SMs can be further instantiated in computing nodes (e.g.
physical servers) and in different networking nodes (e.g. inside
or associated to switch, routers), or any other node provided
that it can offer the required amount of resources (computing,
memory, storage, etc). Security modules include but not limited
to firewall layer 3 (FW-L3), firewall layer 4-7 (FW-L4-7),
intrusion detection system (IDS), intrusion prevention system
(IPS), Web application firewalls (WAF), virtual private network
end nodes (VPN), etc. Each security module has a specific
type (e.g. FW-L3), implementing a specific security policy
(e.g. filtering from a specific source) and a required amount
of resources (e.g. CPU, memory, storage). The different sizes
of SMs may be modeled as VM instance sizes (e.g. Amazon
instances models1 or OpenStack flavors2) implementing some
security functions, where each instance is configured with a
certain number of vCPUs, amount of storage, etc.

We also assume that cloud tenants are enabled with ap-
propriate tools to specify for their virtual cloud applications
(vApps), the appropriate security modules with their types,

1Amazon instances types: https://aws.amazon.com/ec2/instance-types/
2Openstack: https://wiki.openstack.org/wiki/Horizon-NFV-configuration

sizes, and policies along with their precedence dependencies,
which depends of the application needs, and the required
bandwidth units (similarly to [4]). The security modules types
and their precedence relations can be provided to the tenant
through a set of templates that we call network defense
patterns. These patterns can be derived from best practices
in the network security field and organized in a database
accessible by the tenants. They mainly specify the adequate
order between different types of SMs and their right locations
relatively to the source and destination nodes. An example of
order, a FW-L3 is usually placed ahead of a FW-L4-7 to filter
disallowed ports ahead of analyzing legitimate sessions. An
example of an appropriate location for a firewall that used to
shun malicious/unwanted traffic is at a location closer to the
source of this traffic. For lack of space, we leave the description
of network defense patterns for future work.

Concerning the topology of the network, conventional data
centers are commonly designed using a tree-like topology
according to a three-tier architecture [13]. At the bottom level,
servers organized in racks are connected to at least one Top-
of-Rack (ToR) switch. ToR switches form the access tier. Each
ToR switch connects to at least an aggregation switch at the
aggregation tier and finally, each aggregation switch connects
with multiple core switches at the top level. A core switch
connects to the various aggregation switches and provides
connectivity to the outside world. The architecture is generally
organized around tree-based topologies such as fat-tree, which
is being considered by several related works (e.g. [14], [4],
[13]). Tree-based topologies share similar connectivity but only
differ in how addressing and routing are implemented. As such,
we will use fat-tree topology to illustrate our approach but
we believe that our approach can be applied on any tree-like
topology design.

Given these assumptions and settings, our main goal is
to find an optimal placement and routing for the SMs re-
quested by the tenants to secure their vApps. Our optimization
objective is to consolidate/load balance (depending on the
cloud admin objectives) networking and computing resources,
while taking into account these requirements: (1) precedence
relations enforcement between SMs. (2) steering traffic of any
flow, in both directions, through the same stateful SMs, if any
(3) scalability to handle medium to large data centers, with up
to tens of thousands of nodes.

IV. OCDO MATHEMATICAL FORMULATION

In this section, we present the mathematical formulation of
OCDO. We identified the traveling purchaser problem (TPP)
[15] as it models to some extend our problem and fits into
our objectives. It aims at determining a tour of one purchaser,
from and to a depot, that needs to buy a set of items in several
markets such that the total amount of travel and purchase
costs is minimized. We are interested in the capacitated and
symmetric version, where the quantities of products are limited
depending on the market and the cost of traveling is the same
for both directions of the links.

Mapping our problem into TPP, the products would be the
SMs and the markets would be the network nodes where to
place/instantiate these SMs. A purchaser would be in our case
a traffic flow with the need to purchase a list of SMs in a

573

TABLE I. PARAMETERS IN OUR OPTIMIZATION PROBLEM

M = {1, · · · ,m} Set of network nodes
P = {1, · · · , h} Set of (unidirectional) flows between pairs of nodes
N = {1, · · · , n} Set of possible SMs
Sp (resp. Dp) Node source (resp. destination) of the flow p, Sp, Dp ∈ M

Lp Number of units of bandwidth needed by a flow p

ci,j Cost of allocating a unit of bandwidth on the link between
nodes i and j

Lmax
i,j Maximum capacity in units of bandwidth supported by link

(i,j)
bi,l Cost of instantiating a SM l at node i
dl,p Number of instances SM of type l required by the flow p.
qi,l Number of instances SM of type l that can be instantiated at

node i.
Kp ⊂ N Set of SMs that must be traversed by the flow p

Ol,p Positive integer representing the order of the SM l with
respect to the other SMs in the list Kp

CProd List of SMs that need to be collocated
CPurl List of flows that need to collocate product l. In the default

case (no collocation), it should contain one flow

specific order before reaching its destination. To handle the
order of purchasing SMs while traversing the nodes through
a valid path (not a circuit), we extend TPP in [16] to support
multiple purchasers, with different source and destination
nodes, and to handle multiple flows with asymmetric demands
of SMs and different orders. In this paper, we also propose
to add collocation constraints that provides the possibility to
control placing several SMs of the same or different flows
to be purchased at the same node. This may serve several
security-related needs. For instance, for the stateful SMs to
function properly, they need to see both directions of the same
traffic flow. We use a purchaser per direction and we use
the collocation constraint to enforce these requirements for all
stateful SMs.

At a high-level, we need to decide, for each flow p
generated by a source sp and consumed by a destination dp,
which nodes to be visited and where security functions have to
be placed. These can be captured using two binary variables
xi,j,p and yi,l,p. The first variable xi,j,p is defined for each
flow p and each link between a pair of nodes i and j and
it records whether the flow p has to travel through the link
(i,j). The second variable yi,l,p defined for each combination
of node i and SM l, and a flow p records whether the SM l has
to be placed at node i and traversed by flow p. The solution to
our optimization problem would be a set of yi,l,p and a set of
xi,j,p that together denote the optimal placement of SMs and
the optimal path to traverse these nodes. Table I summarizes
parameters used in our formulation. To take into account the
precedence relation between pairs of SMs, we use an integer
variable vi,j,p that captures the order of visiting the links by
each flow p in the solution. If the link (i,j) is not visited by
flow p, then vi,j,p = 0. If the link (i, j) is visited before the
link (k, r) for a given flow p, we need to be able to verify that
vi,j,p > vk,r,p. The first link visited after the source node has
the largest visiting order value (i.e. m− 1). Then, the visiting
order of the successor links on the path is decreased by one
between any two successive links until reaching the destination
node.

As our objective is to consolidate cloud resources (c.f.
§III), we should minimize the number of nodes and the
number of links involved in the SMs placement and in flows
steering in the data center network. Thus, we associate the
lowest purchase costs to the SMs that are available on the

already loaded nodes and the lowest traveling costs for links
that are already having existing flows traveling through them.
Costs for SMs and bandwidth can be calculated as ratios of
used capacity over maximum capacity, measures that can be
provided by the cloud management system. Thus, our objective
is to minimize the total costs (c.f. Eq. 1) consisting of the
cumulative cost of allocating units of bandwidth to all flows
from their respective source node to their respective destination
node (first summation of Eq. 1) and the cumulative cost of
placing all SMs requested by all flows (second summation
of Eq. 1). The mathematical formulation of our problem is
provided in Figure 1. Note that, using this formulation, we
can also tackle load balancing objectives. This can be done
by associating purchase costs to SMs and traveling costs for
bandwidth units that increase with the already existing load on
the nodes and links.

Therein, constraint (2) also known as the flow conservation,
denotes that for any node i, the sum of in-degree edges is
equal to the sum of out-degree edges, which should be one.
For the special case of the source and destination nodes, we
assume one incoming edge into the source and one outgoing
edge from the destination. This is mainly used to model that
any flow produced by a source node is only consumed by
the destination node and no part is consumed by intermediary
nodes. Constraint (3) denotes that the exact amount of SMs
given in the demand list should be instantiated. Constraint (4)
states that any SM can only be instantiated at a given market
if it is actually available there. The term card(CPurl) counts
the number of flows that need to collocate their SM l to merge
the requests for collocated SMs. Constraint (5) indicates that
a node should be included in the solution if the SM is to
be instantiated at that node. Constraint (6) ensures that the
allocated bandwidth does not exceed the maximum capacity
of links. Constraints (7) avoid forming cycles in the solution
path. Constraint (8) states that if a link (i, j) is not visited
by a flow p (i.e. xi,j,p = 0), the value of vi,j,p should be
set to zero, or less than m, otherwise. Constraint (9) is used
to calculate the values of vi,j,p along the path formed by the
solution. Constraint (10) instructs that any SM l listed in Kp

should be instantiated by flow p in the order it is requested as
specified by Ol,p. Thus, for any two SMs l and k in Kp with
a consecutive order such that Ol,p = Ok,p−1, SM l should be
purchased before SM k such that the node i where yl,i,p = 1
is visited before the node j, where yk,j,p = 1. If this is the
case, the constraint verifies that

∑
r∈M vr,i,p ≥

∑
r∈M vr,j,p.

Constraint (11) is the collocation constraint. It states that for
two different flows p1 and p2, if p1 and p2 are in CPurl, and
l is in CProd, then both flows should instantiate the SMS l
at the same node i. Constraint (12) is to enforce that x, y are
binary variables and v is an integer variable.

The above formulation faithfully captures the specific re-
quirements of our problem, however, solving this model in-
volves a large discrete optimization problem which is difficult
to solve in a reasonable time. As expected, the constraint added
to handle the order requirement increases OCDO convergence
time. Another factor that makes the problem difficult is a large
search space driven by an increased (1) number of nodes m,
(2) number of flows h and (3) availabilities of different SMs
in different nodes qi,l. In order to cope with such complexity,
we propose to use a divide and conquer technique, which will
be detailed in the next section.

574

Objective:

Min
∑

p∈P

∑

i∈M

∑

j∈M

(ci,j · Lp · xi,j,p) +
∑

p∈P

∑

i∈M

∑

l∈N

(bi,l · yi,l,p) (1)

Subject to the following constraints:

∑

j∈M

xj,i,p + (if i = Sp then 1) =

∑

r∈M

xi,r,p + (if i = Dp then 1) ∀i ∈ M, ∀p ∈ P (2)

∑

i∈M

yi,l,p = dl,p ∀l ∈ N, ∀p ∈ P (3)

∑

p∈P

yi,l,p − qi,l ∗ card(CPurl) ≤ 0 ∀i ∈M, ∀l ∈ N (4)

∑

j∈M

xi,j,p − yi,l,p ≥ 0 ∀i ∈M \ {Sp}, l ∈ N, p ∈ P (5)

∑

p∈P

Lp ∗ xi,j,p ≤ L
max
i,j ∀i, j ∈M (6)

∑

i∈M

xj,i,p ≤ 1,
∑

j∈M

xi,j,p ≤ 1 ∀i ∈M, ∀p ∈ P (7)

vi,j,p ≤ m× xi,j,p ∀i ∈M, ∀j ∈M, ∀p ∈ P (8)

∑

j∈M

vj,i,p + (if i = Sp then m) =

∑

j∈M

(vi,j,p + xi,j,p) ∀i ∈M \ {Dp}, ∀p ∈ P (9)

m× (
∑

a∈M

xa,i,p − yi,k,p)−
∑

r∈M

vr,i,p +m ≥

m× yj,l,p −
∑

r∈M

vr,j,p

∀p ∈ P, i, j ∈M \ {Dp}, i �= j, l, k ∈ Kp,

l �= k,Ol,p = Ok,p − 1 (10)

yi,l,p1 = yi,l,p2 ∀i ∈M, l ∈ CProd,
p1 ∈ CPurl, p2 ∈ CPurl, p1 �= p2 (11)

xi,j,p, yi,l,p ∈ {0, 1}, vr,i,p ≥ 0, ∀p ∈ P, i, j ∈M, l ∈ Kp (12)

Fig. 1. An Integer Linear Programming Formulation for OCDO

V. MULTISTAGE SCALABLE OPTIMIZATION APPROACH

In §IV, we addressed the offline network planning problem,
where aggregate demands in terms of flows and SMs, assumed
to be known in advance, are provisioned within the network
such that they fit into the capacities of links and nodes.
However, in a SDN-based clouds, the demands are handled
per request [4]. Thus, we propose to address a per request
optimization problem, which is also known as online (reactive)
forwarding in SDN. To generalize, each request in our case
concerns the establishment of a session between a pair of end
nodes3 (e.g. VMs). Thus, for each request, we consider two
3This can be further extended by considering sources and destinations to

be sub-networks or else.

sets of SMs, each with a predefined precedence order among
its elements and each aims at securing one direction of the
traffic between a pair of end nodes.

Figure 2 shows an example of security functions topology
requested by a cloud tenant to secure the communication
between two VMs. Therein, the tenant requests four security
modules, specifically Fw-L3-1, IDS, WAF, and Fw-L3-2, to
secure both directions of the communication between the VMs
with an asymmetric order of SMs in each direction. The tenant
also requests that both directions traverse the same IDS and
WAF.

VM1

FW-L3 WAFIDS FW-L3

FW-L3WAFIDSFW-L3

VM2

Fig. 2. Example of Bidirectional Security Functions Between VM1 and VM2
Specified by a Cloud Tenant

This use case can be addressed using OCDO with two
purchasers (noted as OCDO-2), one purchaser per direction.
To ensure that the traffic in both directions visit the same
stateful node, we use the collocation constraint as explained
in §IV. The online per-request strategy limits the number of
simultaneous purchasers in OCDO to only two addressing one
of the complexity factors described in §IV.

Taking into account the two other factors contributing to
the complexity of the problem (i.e. number of nodes and avail-
ability of SMs) explained in §IV, we propose two techniques
that composed together enable handling large data centers and
multiple tenants requests to secure their virtual applications in
the cloud while significantly improving the execution time (c.f.
§VII). First, to address the problem of large number of nodes,
we propose to decompose the topology of the network into a
set of blocks, where each block is formed by independent paths
(c.f. §V-A). Second, we propose to segment the availability of
SMs among the nodes based on the position of these nodes
with respect to the communicating endpoints (c.f. §V-B).

A. Network Topology Decomposition

An inherent characteristic of tree-based topology structure
is the organization of the connectivity using sets of disjoint
paths in the same PoD or in different PoDs, between any two
hosts [14]. For instance, if two hosts in two different PoDs
have to communicate, one of the aggregate switches and one
of the core switches have to be involved. Once an aggregate
switch is selected from the source ToR switch, one ends up
with a set of possible paths that are disjoint with respect to
the other paths that are associated with any other aggregate
switch. Based on this observation, we propose to decompose
the network topology into several independent blocks. By
independent, we mean that the paths in different blocks do not
share any common node except the source, the destination and
their respective ToR switches. Figure 3 illustrates the notion
of block and zones in a k-ary Fat-tree topology. Having a

575

������ ��	
�
�
����
�

�������
��
�
����
�

���
	�
	�

����
���	
���
�
�
����
�

� � ���

�����

������

�����������

�����������

�����

�����
�����������

�����

������

�����

� ����������
�����������

������

�����

�����
�
	�
	�

Fig. 3. Example of one Block with Three Availability Zones in 3-level k-ary
Fat Tree. Switches and Links belonging to a single block are illustrated using
bold lines. The three zones inside the block are illustrated using striped boxes.

decomposed network topology, the optimization problem can
be then addressed concurrently in these independent blocks
using our applying OCDO-2 algorithm. Since these blocks
consist of disjoint paths with respect to each other, once an
aggregate switch is selected, the optimal solution lies always
in one block. Therefore, the optimal value stays the same with
and without decomposition. Thus, we propose to compute the
optimal costs in all blocks in parallel and then compare them
together to find the optimal solution and the block where to
place our flows.

The number of blocks as well as the number of nodes
and links within a single block depend on the value of the
parameter k of the fat-tree and the location of the flow’s
end nodes. Given a graph G capturing the fat-tree topology
along with the source and destination nodes provided as input,
Algorithm 1 describes the decomposition of G into blocks.
Note that therein the variable sBlock is a sub-block that
constitute the common part between Case 3 and Case 4. The
functions findLinks and findSwitches have two parameters: The
first is a list of (or single) nodes from where the search starts
and the second parameter specifies the direction of the search
(up or down). The function findConnected is used to find a
node given a link and the node connected at the other end
of this link. The functions addlinks and addNodes are used
to add the found links and nodes, respectively, to the block.
The function getSwAndlinks calls these functions and used as
a shorthand to add nodes and links to block[i] from a given
switch provided as parameter to this function. We distinguish
four possible cases:

• Case 1: Both source and destination VMs are located
in the same physical node. In this case, the physical
server is a single node to instantiate any SM. This case
can be easily addressed by instantiating the security
modules at the server hosting the VMs.

• Case 2: The VMs are located in two different physical
servers that are connected to the same ToR switch.
This case maps to finding the spot with enough re-
sources among physical servers, or in the ToR switch.

• Case 3: The source and the destination are connected
to 2 different ToRs but in the same PoD. In this
case, there will be a single block, including the two
physical hosts (i.e. at source and destination), the two
ToR switches connecting the physical servers, and the

Algorithm 1 TopologyDecomposition Algorithm
Require: G graph of the topology
Require: s-node source node
Require: d-node destination node
Ensure: Blocks[]: Set of blocks returned by this algorithm
PhysSrc = G.getServer(s-node)
PhysDst = G.getServer(d-node)
if PhysSrc == PhysDst then � Case 1
Blocks[1].addNodes({PhysSrc})

else
ToR-s = G.findSwitches(PhysSrc,up)
ToR-d = G.findSwitches(PhysDst,up)
if ToR-s == ToR-d then � Case 2
Blocks[1].addNodes({PhysSrc,PhysDst,ToR-s)

else
Agg-s[] = G.findSwitches(ToR-s,up)
Agg-d[] = G.findSwitches(ToR-d,up)
sBlock.addNodes({PhysSrc,PhysDst})
sBlock.addNodes({ToR-s,ToR-d})
links = G.findLinks({PhysSrc,PhysDst},up)
sBlock.addlinks(links)
if Agg-s[] ∩ Agg-d[] �= ∅ then � Case 3
links = G.findLinks({ToR-s,ToR-d},up)
sBlock.addlinks(links)
sBlock.addNodes(Agg-s[])
Blocks[1] = sBlock

else � Case 4
links = G.findLinks({ToR-s},up)
i = 1
for all link in links do
Block[i] = sBlock
Block[i].addLinks(link)
agg-s = G.findConnected(link, Tor-s)
Block[i].getSwAndlinks(link, agg-s,up)
cores-s[] = G.findSwitches(agg-s,up)
Block[i].getSwAndlinks(link, cores-s[],down)
agg-d = G.findSwitches(cores-s, down)
Block[i].addNodes(agg-d)
Block[i].addLink(agg-d,ToR-d)
i = i + 1

end for
end if

end if
end if
return Block[]

k/2 aggregates switches. We directly apply OCDO-2
algorithm to this block of nodes.

• Case 4: The source and the destination are connected
to 2 different ToRs in two different PoDs. In this case,
we decompose the fat tree into a set of blocks. Since
in a k-ary fat-tree, we have k/2 aggregate switches per
PoD, we will have for this case k/2 blocks. Each block
will consists of six nodes (fixed part) plus k/2 other
nodes (variable part) corresponding to the number of
cores switches. The fixed part consists of the two
physical servers of both VMs, the two corresponding
ToR switches and the two selected aggregate switches.
Thus, in total, each block will contain (K/2)+(3∗2)
nodes.

From now on, we solve the use case 4 as being the most
complex among the enumerated ones.

576

B. Segmentation of products availabilities

The decomposition reducing the number of nodes in each
block decreases the algorithm complexity and improves the
overall scalability of OCDO-2 algorithm. Though, for large
number of k, the experiments descried in §VII show that
the algorithm still does not scale enough. To address this
problem, we propose to rethink the availabilities of security
functions by making some SMs available only in some zones
within a block. Indeed, based on our experience and and the
literature for best practices on the deployment of network
security appliances, we realized that there are well-known
security functions deployment patterns, called here network
defense patterns, that one should take into account in the
placement problem, beyond the simple mathematical criteria.
For example, an IDS has generally to see all traffic to make
the right decision. Further, VPN terminations are useless if
deployed in the core of the network and a WAF or an IDS are
generally deployed after the VPN termination. Additionally,
some SMs (e.g. firewalls) are more efficient if deployed closer
to the source, or to the destination. Therefore, based on these
observations, instead of making any security function available
everywhere, we distribute the availability of each security
function depending on several criteria including the semantics
underlying the security function itself with the best location
where it would operate correctly and efficiently, the trust, and
the service chains we are aiming to place. By considering these
facts in the distribution of availabilities, we can eliminate some
inefficient and incorrect deployment of SMs.

Thus, we propose to divide a given service chain into three
independent segments that we call security segments: Source
segment (close to the source), destination segment (close to the
destination) and core segment (the segment between the source
segment and the destination segment). A security segment
is defined as an ordered sequence of SMs that is generally
composed of one or more security modules and that is part of
a larger security chain. Additionally, we also divide similarly
each block into three zones. Then, we propose to assign each
segment to a zone, where the SMs within the segment are
made available in the zone’s nodes. The final deployment is
most often a mixture of optimizations based on some or all
factors mentioned above. The main contribution in this paper
being making OCDO-2 algorithm scalable for large problems,
we then propose to tackle the segmentation algorithm in future
work. For this paper, we consider that the segmentation is done
by the tenant security expert. As the security experts deploy
different security appliances in daily life based on the similar
factors, we believe this assumption is realistic.

C. Multistage OCDO

The multistage OCDO algorithm uses the decomposition
and segmentation conjointly to solve the optimization of
SMs in the cloud infrastructure. Algorithm 2 describes our
approach. We first decompose the network into different blocks
and then segment the security chain between source and
destination nodes. Afterward, we assign segments to different
zones. These assignments are used to generate the availability
of SMs in the nodes of each zone in each block, using the
function defineAvailabilityData. The actual quantity of SMs of
different types qi,l are defined based on the actual resources
(i.e. CPU, memory, storage) in each node i in the block and

the zone it belongs to. For instance, if a SM l′ is available
in a given zone Z, we have qi,l′ �= 0 for every node i ∈ Z,
otherwise, qi,l′ = 0. Once the availability data is generated
for all blocks, several OCDO-2 programs (i.e. instances are
equal to the number of blocks) are executed in parallel such
that each thread is fed with the data concerning its associated
block. OCDO-2 is then executed for all blocks, simultaneously.
Finally, the block with the minimal cost represents the solution
in which the actual placement is performed.

Algorithm 2 Multi-stage Algorithm
Require: chain: Ordered SMs with their types and sizes
Require: s-node
Require: d-node
Require: G: Topology graph
Require: data: OCDO-2 input without availabilities (qi,l)
Blocks[] = TopologyDecomposition(G, s-node, d-node)
Segments[Seg, AssignedZone] = Segment(chain)
for all b in Blocks[] do
SMAvailabilities[b]= defineAvailabilityData(Segments[][])

end for
Sol[] = ParallelComputeOCDO-2(data,SMAvailabilities[])
Sol[block-opt] = MinimumCost{Sol[b]; b in Blocks[]}
executePlacement(Sol[block-opt])

VI. OCDO PROTOTYPE

As a proof of concept, we implemented our algorithms
and integrated them into Openstack4 using OpendDayLight
(ODL)5 for network steering inside Openstack. We integrated
our prototype into our Cloud Defense Orchestration (CDO)
framework. The latter consists of CDO-Manager (CDO-M)
that is designed to interact mainly with Openstack control ser-
vices. CDO-M collects networking and computing information
from Openstack, including the network topology, the loads on
different nodes and links, and the availabilities of resources
at the nodes for different type/sizes of security modules.
Using these information, CDO-M builds the graph annotated
with costs and availabilities. CDO-M then communicates this
graph along with the bidirectional service chain annotated
with the types, sizes, and precedence of the required SMs to
our extension of Nova scheduler that uses our CDO-evaluator
(CDO-e). The latter is a module that implements actually our
optimization approach. It implements the topology decompo-
sition algorithm, SM availabilities distribution algorithm, and
multi-stage placement algorithm. CDO-e interacts with several
instances of the mathematical solver to communicate different
decomposed graphs and the bidirectional service chain and
to receive the optimal placement solution. We use Nova to
instantiate the right security module in the right node. To
realize the service chaining and traffic steering in the network,
we use OpenDaylight (ODL), the SDN controller, which
enables rich and flexible networking functionalities for CDO.

VII. NUMERICAL RESULTS

In the following, we describe the simulation experiments
and the related numerical results to demonstrate the scalability
of our approach. We also study the distance with respect to
optimality.

4http://www.openstack.org/software/icehouse/
5http://www.opendaylight.org/

577

A. Simulation Setup

We use a machine with 6 cores Intel Westmere clocked
at 2.30 GHz with 24 GB RAM. We used as mathematical
optimization problem solver the GLPK 6. For the sake of
generality, to get closer to real world data centers, where the
CPU load on different hosts and the bandwidth load on the
links varies drastically based on time, applications running
in the cloud, etc., we use random values to represent the
loads. This also has been applied in other related works
(e.g. [2]). Thus, we randomly generate costs of bandwidth
units and costs of SMs in a range of [0, 1]. Furthermore, the
quantity of SMs available at each node is randomly generated
in the interval [0,5] with uniform distribution according to
the selected segmentation. We also randomly generate links
capacities. The experiments were run for different fat tree sizes
(from k=4 to k=128), with different number of SMs (but we
show only the case of 4 SMs as presented in Fig. 2), with and
without decomposition and for different segmentation choices.

We consider two sorts of segmentation: SegN denotes
a segmentation that generates non-overlapping availabilities
of SMs in adjacent zones and SegO a segmentation with
overlapping in SMs availability in adjacent zones. Let Zs,
Zd, and Zc denote respectively zone at source PoD, zone at
destination PoD and zone at the core, in given block. For the
sake of this paper, we have chosen two segmentations as we
believe they describe well how in real world SMs are deployed:
SegN ={ Zs:= FW-L3; Zc := IDS; Zd := FW-L3,WAF} and
SegO ={ Zs:= FW-L3,IDS; Zc := IDS; Zd:=FW-L3,WAF}.
Note also that FW-L3 in Zs and Zd are considered as different
FW instances. For the sake of space, we will not discuss
this choice here though we believe that this use case can be
extended to compare any two segmentations.

B. Results and Discussion

We propose to compare the ILP formulation of our problem
(no decomposition and no segmentation) to our multistage
approach. In the following, we also investigate the impact
of each mechanism on the algorithm performance. We finally
investigate the penalty on optimality induced by the segmen-
tation.

1) Decomposition Benefits: In order to show how our
decomposition approach, described in Section V-A, impacts
the execution time and the cost, we ran our algorithm, with and
without decomposition, for all k values. For the experiments
without decomposition, we could not run the case of k ≥ 16
due to the limitations of GLPK solver that cannot handle large
number of nodes. Table II summarizes the execution time
results. As one can note, the execution time for decomposed
solution is 2.8 times better for k = 4 and 32.1 times better
for k = 8. Even with decomposition, we could not run
our experiment for k = 128. As for the total cost of the
solution (we don’t show the cost results here), it is identical
for both cases (i.e. with or without decomposition) for k = 4
and k = 8. This could not be verified by experiments for
k ≥ 16. One can notice that the decomposition significantly
improves the execution time without hurting the optimality
and correctness of the solutions. As explained in the section
V-A, decomposition reduces the search space for the algorithm,

6GNU Linear Programming Kit: kam.mff.cuni.cz/∼elias/glpk.pdf

which reduces the execution time but does not impact the
optimality of the algorithm results.

Even though the improvements in our algorithm execution
time are significant with decomposition, we realized that even
with medium k values (the execution time is already at 14.4
seconds for k = 32) the large execution times make our opti-
mization algorithm usage difficult in challenging deployments
where the decisions to place SMs in the cloud infrastructure
need to be made in few seconds Therefore, segmentation of
SMs availability, as presented next, is needed to improve on
the execution time after decomposition.

TABLE II. OCDO-2 EXECUTION TIME IN SECONDS AS A FUNCTION
OF K, FOR 2 FLOWS AND 4 SMS, WITH AND WITHOUT DECOMPOSITION.

No Segmentation
k No Decomposition Decomposition
k=4 1.4 0.5
k=8 44.9 1.4
k=16 - 1.6
k=32 - 14.4
k=64 - 61.2
k=128 - -

2) Improvements using Segmentation : As illustrated in
Table III, the segmentation not only results in better perfor-
mances, from 5 times better for k = 4 up to 14 times better
for k = 64, it further extends the applicability of our algorithm
to larger data center (e.g. k = 128). For k = 128 and no-
segmentation, OCDO-2 did not converge. We will present the
impact of segmentation on the costs next.

TABLE III. OCDO-2 EXECUTION TIME IN SECONDS AS A FUNCTION
OF K FOR 2 PURCHASERS AND 4 SMS, PER BLOCK, FOR THE CASES OF NO

SEGMENTATION AND WITH SEGMENTATION SegN .

Decomposition
k No Segmentation Segmentation SegN
k=4 0.5 0.1
k=8 1.4 0.1
k=16 1.6 0.1
k=32 14.4 0.7
k=64 61.2 4.6
k=128 - 49.2

3) Comparing different segmentations: As discussed in
V-B, the segmentation is chosen by the tenant security experts.
In this section, we illustrate how different segmentations can
impact the execution time for OCDO-2. As the table IV
shows the segmentation SegN performs always better than
the segmentation SegO. This can be explained by a smaller
search space in the case of the former compared to the latter.
We conclude that by reducing the overlap between different
SMs, and by making segments with small number of SMs, we
reduce the search space and therefore contribute to decrease
the execution time and make the approach more scalable.

Fig 4 illustrates the penalty in percentage of costs for
each segmentation scenario (SegO and SegN). The penalty
is computed based on the percentage of deviation of the cost
of the considered segmentation (SegO or SegN) from the cost
for the no-segmentation case. One can note that SegN comes
with higher cost gap than SegO even though, SegN performs
better from execution point of view (c.f. Table IV). Therefore,
there is a tradeoff between time execution and optimality;
Higher execution time comes with better optimality. However,
for all measured use cases of workloads, the largest gap is

578

always less than 15 % for both type of segmentations for all
k ≤ 64, compared to the case of the optimal values with no
segmentation.

TABLE IV. OCDO-2 EXECUTION TIME IN SECONDS AS A FUNCTION
OF K FOR 2 PURCHASERS AND 4 SMS, FOR TWO SEGMENTATION SegO
AND SegN . FOR k = 128 AND SegO , OCDO-2 DID NOT CONVERGE.

k Segmentation SegN Segmentation SegO
k=4 0.1 0.1
k=8 0.1 0.1
k=16 0.1 0.1
k=32 0.7 2.1
k=64 4.6 17.1
k=128 49.2 -

It is also worthy to note that the difference between the two
penalties in both segmentations is between 0 and less than
5 percents. Thus, for large data centers, one can use SegN
instead of SegO to have better execution time without loosing
so much from the optimality point of view. Finally, for the
case of a fat-tree of size k=128, SegN provides the only way
for OCDO-2 to converge.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

4 8 16 24 32 48 64

P
en

al
ty

 C
os

t P
er

ce
nt

ag
e

k

SegN
SegO

Fig. 4. Penalty Cost Percentage for SegO and SegN as a Function of k

VIII. CONCLUSION

Network functions virtualization together with software-
defined networking have the potential to significantly improve
network security in the cloud. Optimal placement of virtual
middleboxes is challenging when dealing with large cloud
data centers, multiple flows, and increased number of potential
NF locations. Adding policy-awareness has been recognized to
increase the difficulty of solving this problem. In this paper,
we presented a novel approach to address the aforementioned
challenges. Mainly, we propose an online per request place-
ment and path optimization formulation, that is based on our
extension to the well-established traveling purchaser problem.
We also come up with two techniques, namely decomposition
and segmentation, that composed together enable scaling to
quite large data centers (128-ary fat-tree). We plan as future
work to explore how our approach can address other emerging
topologies.

ACKNOWLEDGMENT

This work is partly funded by NSERC Chair on Sustainable
Smart Eco-Cloud, NSERC and by the NSERC/ERICSSON
CRDPJ: ECOLOTIC Sustainable and Green Telco-Cloud.

REFERENCES
[1] NFV Working Group, “Network Functions Virtualisation (NFV); Use

Cases V1.1.1,” http://www.etsi.org/deliver/etsi gs/nfv/001 099/001/01.
01.01 60/gs nfv001v010101p.pdf, Oct. 2013.

[2] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand,
T. Benson, V. Sekar, and A. Akella, “Stratos: A network-aware or-
chestration layer for virtual middleboxes in clouds,” arXiv preprint
arXiv:1305.0209, 2013.

[3] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design and
implementation of a consolidated middlebox architecture,” in NSDI,
2012, pp. 323–336.

[4] Z. Cao, M. Kodialam, and T. V. Lakshman, “Traffic steering in software
defined networks: Planning and online routing,” in Proceedings of the
2014 ACM SIGCOMM Workshop on Distributed Cloud Computing, ser.
DCC ’14. New York, NY, USA: ACM, 2014, pp. 65–70.

[5] P. Quinn, S. Kumar, P. Agarwal, R. Manur, A.Chauhan, N. Leymann,
M. Boucadair, C. Jacquenet, M. Smith, N. Yadav, T. Nadeau, K. Gray,
B. McConnell, and K. Glavin, “Network service chaining problem
statement,” Working Draft, IETF Secretariat, Internet-Draft draft-
quinn-nsc-problem-statement-03, August 2013. [Online]. Available:
https://tools.ietf.org/html/draft-quinn-nsc-problem-statement-03

[6] D. A. Joseph, A. Tavakoli, and I. Stoica, “A policy-aware switching
layer for data centers,” in ACM SIGCOMM Computer Communication
Review, vol. 38, no. 4. ACM, 2008, pp. 51–62.

[7] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-
fying middlebox policy enforcement using sdn,” in Proceedings of the
ACM SIGCOMM 2013 conference on SIGCOMM. ACM, 2013, pp.
27–38.

[8] J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and A. Vahdat, “xomb:
Extensible open middleboxes with commodity servers,” in Proceedings
of the eighth ACM/IEEE symposium on Architectures for networking
and communications systems. ACM, 2012, pp. 49–60.

[9] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/merge: System support for elastic execution in virtual middle-
boxes.” in NSDI, 2013, pp. 227–240.

[10] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul, “Flowtags:
enforcing network-wide policies in the presence of dynamic middlebox
actions,” in Proceedings of the second ACM SIGCOMM workshop on
Hot topics in software defined networking. ACM, 2013, pp. 19–24.

[11] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Avant-guard: scalable
and vigilant switch flow management in software-defined networks,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013, pp. 413–424.

[12] M. Bouet, J. Leguay, and V. Conan, “Cost-based placement of virtu-
alized deep packet inspection functions in sdn,” in Military Commu-
nications Conference, MILCOM 2013-2013 IEEE. IEEE, 2013, pp.
992–997.

[13] R. Alshahrani and H. Peyravi, “Modeling and simulation of data center
networks,” in Proceedings of the 2Nd ACM SIGSIM/PADS Conference
on Principles of Advanced Discrete Simulation, ser. SIGSIM-PADS
’14. New York, NY, USA: ACM, 2014, pp. 75–82. [Online].
Available: http://doi.acm.org/10.1145/2601381.2601389

[14] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 4, pp. 63–74, Aug. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1402946.1402967

[15] T. Ramesh, “Traveling purchaser problem,” Opsearch, vol. 18, pp. 78–
91, 1981.

[16] A. Shameli-Sendi, Y. Jarraya, M. F. Ahmed, M. Pourzandi, C. Talhi, and
M. Cheriet, “Optimal placement of sequentially ordered virtual security
appliances in the cloud,” in the Proceedings of the 14th IFIP/IEEE Inter.
Symposium on Integrated Network Management (to appear), 2015.

579

