
EXPERIENCES FROM A FIELD TEST USING ICN FOR LIVE VIDEO STREAMING

Adeel Mohammad Malik
Ericsson

adeel.mohammad.malik@ericsson.com

Bengt Ahlgren
SICS Swedish ICT
bengta@sics.se

Börje Ohlman
Ericsson

borje.ohlman@ericsson.com

Anders Lindgren
SICS Swedish ICT

andersl@sics.se

Edith Ngai
Uppsala University

edith.ngai@it.uu.se

Lukas Klingsbo
Uppsala University

lukas.klingsbo@gmail.com

Magnus Lång
Uppsala University

magnus.lang.7837@student.uu.se

ABSTRACT

Information Centric Networking (ICN) aims to evolve the Internet
from a host-centric to a data-centric paradigm. In particular, it
improves performance and resource efficiency in events with large
crowds where many users in a local area want to generate and watch
media content related to the event.

In this paper, we present the design of a live video streaming
system built on the NetInf ICN architecture and how the architecture
was adapted to support live streaming of media content. To evaluate
the feasibility and performance of the system, extensive field tests
were carried out over several days during a major sports event. We
show that our system streams videos successfully with low delay and
communication overhead compared with existing Internet streaming
services, by scalability tests using emulated clients we also show that
it could support several thousands of simultaneous users.

1. INTRODUCTION

Information Centric Networking (ICN) has attracted much attention
from the Internet research community in recent years [1]. Its vi-
sion is to evolve the Internet infrastructure away from a host-centric
paradigm to a network architecture based on named data objects.
Data then becomes independent from its original location, and can
be spread and made widely available through in-network caching.
This approach can improve the network efficiency, scalability, and
robustness.

A major benefit of ICN is that it enables caching of data objects
in the network at the data level to reduce congestion and improve
delivery speed. It can tackle the Flash Crowd problem on the Internet
naturally and efficiently. Flash Crowds occurs when a large group
of users access the same data source (e.g. web site or video) on
the Internet, which cause traffic overload. Through caching of data
objects at intermediate routers, queries and data streams of multiple
clients can be aggregated along their paths to shorten the delay and
reduce communication overhead. This applies in scenarios such as
large crowds watching a game in an arena.

This paper presents a live video streaming system built on the
NetInf ICN architecture [2, 3] and a field test conducted during the
FIS Nordic Ski World Championship 20151 in Falun, Sweden. The
system includes many ICN architectural elements such as naming,

1http://falun2015.com/

service discovery, aggregation and caching. The system function-
ality is implemented on a set of fixed NetInf routers together with
a mobile streaming application developed for video recording and
viewing. Experiments have been conducted with up to 20 mobile
devices in the field capturing videos of athletics and streaming them
in real-time from Falun to other clients at the event and at other sites.
As the system currently runs as an overlay on the existing Internet
protocols, and the NetInf routers have connectivity to the global In-
ternet, the published video streams can be viewed by a client running
our code anywhere on the Internet. However, the full benefits of the
NetInf system such as aggregation and deaggregation of the streams,
and on-path caching of data objects, are of course only available
when connected to a network where there is a NetInf router present.
Given the overlay structure and possibility to cross non-NetInf net-
works, it is possible to deploy a NetInf router anywhere in the Inter-
net, making incremental deployment of the system possible. Our ex-
perimental results show that the system streams videos successfully
with low delay and communication overhead compared with existing
Internet streaming services Twitch and YouTube. We also made in-
teresting observations on the system performance with different kind
of network settings, including local WiFi, public WiFi, and 3G/4G
connectivity. We also performed scalability tests that show that the
routers we use can support more than 2000 clients each.

2. THE NETINF LIVE STREAMING SYSTEM
ARCHITECTURE

Figure 1 shows the architecture of the NetInf live video streaming
system. Users can record and publish video streams at a live event
and at the same time other users can watch the streams live. The
architecture also facilitates streaming to a device anywhere on the
internet so that users not present at the venue can also publish or
play streams.

Recording and playing clients at the event venue can connect
to the system using local WiFi or mobile internet (3G/4G). Before
a client can start publishing or playing, it first connects to a NetInf
router. Consequently this router acts as the first hop NetInf node
for the client. Clients on local WiFi at the event venue connect to
a NetInf router in the local access network. Clients on the internet
connect to a NetInf router in the NetInf core network.

The NetInf core network hosts a Name Resolution Service
(NRS). This service is responsible for resolving object names into

locators. It also provides search function for the registered Named
Data Objects (NDOs).

ICN employs ubiquitous caching. Therefore every NetInf router
in the architecture is coupled with a local cache. These routers cache
NDOs on-path and serve them to corresponding GET requests when
there is a cache hit. This ensures that clients are served data from the
local network (if the data is cached) and that the edge links (like the
one between the NetInf access network and the NetInf core network
as seen in Figure 1) are not choked with traffic.

NetInf Core Network

NRS

NetInf Access
Network at
event venue

Internet

NetInf router
with local cache

WiFi AP

3G/4G
base station

Legend

Recording client

Playing client

WiFi 3G/4G

Fig. 1. System architecture

2.1. Stream Representation

In ICN content is abstracted in the form of Named Data Objects
(NDOs). A video can hence be organized into several video chunks
where each chunk is abstracted into an NDO.

The entire video stream is represented by a single Header NDO.
In other words, the Header NDO glues together all video chunks of a
stream and presents itself as a single point of reference in order to re-
quest any subset of a video. The Header NDO contains the metadata
for each video i.e. a description of the video and the geolocation
of where the video is recorded. When subscribing to a live video
stream, a client in fact sends a subscription request for the Header
NDO.

2.2. Naming and the Name Resolution Service (NRS)

NetInf employs hash-based names as described in RFC6920 [4]. In
this scheme, SHA-256 is used to derive the name for an NDO. A
Name Resolution Service (NRS) stores name-locator bindings of the
published NDOs. These bindings are used to resolve object names
into locators. According to Figure 1 the NRS is located in the Net-
Inf core network but it may be located elsewhere e.g. in the NetInf

access network. The NRS also stores metadata for each NDO regis-
tered in it. The metadata is an important part of the system as it fa-
cilitates some important functions in the system such as populating
the Event Browser as described in Section 2.9 and the seek function
in video playback.

2.3. Subscribe-Notify Protocol and Content Retrieval

The NetInf live video streaming system uses a hop-by-hop
Subscribe-Notify protocol between the requesting client and the data
source. Figure 2 illustrates a signaling sequence of the Subscribe-
Notify protocol between two clients, a NetInf router and a data
source.

Client 2
(C2)

Client 1
(C1)

NetInf Router
(N)

Source
(S)

 Subscribe Xn (Src: C1, Dst: S)

 Subscribe Xn (Src: C2, Dst: S)

 Subscribe Xn (Src: N, Dst: S)

GET X1 (Src: N, Dst: S)

GET X1 (Src: C1, Dst: N)

 GET X1 (Src: C2, Dst: N)

Message intercepted

Content cached

Notify X1 (Src: S, Dst: N)

 GET RESP X1 (Src: S, Dst: N)

 Notify X1 (Src: N, Dst: C1)

 Notify X1 (Src: N, Dst: C2)

 GET RESP X1 (Src: N, Dst: C1)

 GET RESP X1 (Src: N, Dst: C2)

Fig. 2. Subscribe-Notify protocol and Content Retrieval

When a user selects a live stream for viewing the client sends
out a subscribe request for the Header NDO of the video. This can
be seen in Figure 2 where C1 and C2 send subscribe requests for
Xn towards the data source. NetInf routers along the path taken by
the request intercept the request and establish state for the request-
ing client. Subsequently they initiate a request of their own towards
the data source. Any more subscription requests for the same video
stream are aggregated. Requests from C1 and C2 are intercepted
and aggregated by N into a single request towards the source. Note
that in this case C1 and C2 will be subscribers to N while N will
be a subscriber to S.

Notifications are triggered at the data source every time a new
video chunk for the requested video stream is published at the data
source by the publisher. Notifications are deaggregated in a simi-
lar fashion as the requests are aggregated. Notifications contain the
name of the published NDO that contains the new video chunk. On
receiving the notification the clients send a NetInf GET request for
the published chunk. The GET request is destined for the next-hop
NetInf node with which the client has established a Subscribe-Notify
relationship. Figure 2 shows that S sends out a notification for NDO
X1 to N . Subsequently N sends out notifications for NDO X1 to
C1 and C2. N then sends a GET request to S for the notified NDO
and receives it in a GET RESP from S. Also C1 and C2 send a

GET request to N for the notified NDO and receive it in a GET
RESP from N .

The Subscribe and Notify messages employ the NetInf UDP
convergence layer. These messages have a simple reliability mecha-
nism built-in to ensure that the messages are retransmitted if lost in
transit. The NetInf GET and GET RESP messages, however, employ
the NetInf HTTP convergence layer [3].

2.4. NetInf Service Discovery

As mentioned in Section 2 a client should connect to a NetInf router
before it can start publishing or playing a video stream. Clients
connected to the local access network at the event venue via WiFi
use Multicast DNS (mDNS) to discover the NetInf router that they
should connect to. Clients on the internet connect to a NetInf router
in the NetInf core network. For this they use DNS resolution to
resolve a fixed name to the IP address of a NetInf router in the Net-
Inf core network. In order to load balance between different NetInf
routers in the core network the DNS name can be resolved to more
than one IP address using several DNS A records.

2.5. Caching

Each NetInf router has a local cache to cache NDOs on-path. Every
router also runs a local NRS exclusively for retrieving NDOs from
the cache. In this case the NRS only serves as a database to check if
an NDO is cached locally or not. GET requests originating from the
clients are intercepted by the NetInf routers. The NetInf routers then
check if the NDO is cached locally. If yes, the request is served with
the requested NDO. Otherwise the request is forwarded towards the
data source.

The NetInf live video streaming system also allows the users
to play recorded videos. This is where caching is primarily useful.
Note that while playing a live video stream the benefits of caching
are less frequently used because all the subscribers requests for the
recently published video chunks arrive within a very short time inter-
vall. For live video streaming it is request aggregation, as described
in Section 2.6, that provides the needed benefits.

2.6. Request Aggregation

Request aggregation is an characteristic feature of ICN. In this sys-
tem the NetInf routers aggregate subscription requests and GET re-
quests of users for video streams and chunks. Placing NetInf routers
at network edges would allow for traffic aggregation on the transit
links. In this case traffic aggregation on the link between the NetInf
core network and the NetInf access network implies that only one
flow per video stream will traverse the link at a given time.

Subscription requests are aggregated at each NetInf hop along
the path from the requesting clients to the source. This eventually
results in a tree of hop-by-hop point-to-multipoint subscription rela-
tionships where each node along the path from the requesting client
to the data source only interacts with its next-hop NetInf node. No-
tifications generated by the data source when video chunks are pub-
lished are deaggregated along the path from the data source to the
clients.

2.7. Searching and Metadata

The NRS allows for search queries based on metadata of the regis-
tered NDOs. The registered NDOs have well-defined JSON schemas
for the metadata which are used to parse the different fields in it.

There are two types of NDOs registered in the NRS. First the
Header NDO and second the NDOs for video chunks. The two types
of NDOs have the following key fields in the metadata.

Table 1. NDO metadata
NDO type Metadata fields
Header NDO Video name, Video description,

Video geolocation
Video chunk NDO Header NDO name, Timestamp,

Sequence number

NRS search is used for a number of functions e.g. populating the
Event Browser, retrieving video chunks when a seek is performed
during video playback and retrieving video chunks for which notifi-
cations are lost.

2.8. Video Encoding and Chunking

The video generated by the recording device is encoded using H.264.
The video data rate is 1 Mbps and the resolution is roughly 864×480.
The video is split into chunks so that each chunk fits into a NDO.
Chunking is done at I-frames in order to ensure that video chunks are
independent of each other. The H.264 encoded chunks are packaged
into MP4 containers. Each chunk corresponds to a video playout of
2 seconds. This parameter can be tweaked to achieve different trade-
offs between the playback latency and the NDO header overhead.
The playing application buffers video data of roughly 10 seconds.

2.9. Event Browser

An Android application enables the clients to record and view live
and recorded video streams. The application also provides an inte-
grated Event Browser. The Event Browser is used for video stream
selection. It provides a List view and a Map view. The List view
shows a list of all the live and recorded streams while the Map view
plots icons over a map of the arena corresponding to the geolocation
of where the video streams are recorded.

The application polls the NRS periodically to populate and keep
the Event Browser updated with the list/map of video streams. In
order to do this a NRS search is performed for all the Header NDOs
registered in it. To overcome the disadvantages of the update latency
associated with polling, the information about changes in the list of
published videos can be its own NDO to which the application can
subscribe.

2.10. Security - Signing and Hash-Based Names

NetInf inherently provides content integrity through the use of hash-
based names to name objects. In this system every time a data object
is produced it is hashed to derive a name for it. The NDO is addition-
ally signed by the publisher to ensure the authenticity of the NDO.
The signature is added to the metadata of the the NDO. This signa-
ture is also included in the notifications for published video chunk
NDOs so that the receiving clients can verify that the notification
was not forged by an attacker.

3. FIELD TEST AND EXPERIMENTAL RESULTS

To test the NetInf video streaming system in a real-life scenario, a
prototype of the system was deployed and tested during the 2015 FIS
Nordic World Ski Championship in Falun, Sweden.

3.1. Network Setup

Bowser LuigiToaster

Morpheus TrinityNeo

WiFi & 3G/4G

clients

WiFi AP

WiFi AP

Kista

192.168.1.0/24

192.168.2.0/24

V
P

N
 t

u
n

n
e

l

Internet

Port forwarding (for the NetInf service and the NRS)

WiFi & 3G/4G clients connecting via the internet

Name Resolution Server (NRS)

Falun

NetInf

Routers

NetInf

Routers

10 Mbps

Fig. 3. Network setup

Figure 3 shows the network setup that was used to carry out
the field test. The network setup spans two sites in Sweden, Falun
and Kista. Identical setups were used in the two sites with three
NetInf routers installed at each site (Toaster, Bowser and Luigi in
Falun and Neo, Morpheus and Trinity in Kista) and a local WiFi
access point connected on the same subnet as the routers to facilitate
client connections. Besides the local WiFi that we set up in Falun, a
commercial telco operator had provisioned free internet access on a
separate WiFi which was also used to run the field tests.

Firewalls are installed as gateways in Falun and Kista. A VPN
tunnel is configured between the two firewalls and any traffic ex-
changed between the nodes in Falun and Kista is routed through this
tunnel. The networks in Falun and Kista are separate subnets. The
separation was needed to ensure that clients connecting to the WiFi
access point in Falun only discover the NetInf routers in Falun (via
mDNS) while clients connecting to the WiFi access point in Kista
only discover the NetInf routers in Kista. Traffic exchanged between
Falun and Kista over the VPN tunnel is aggregated as described in
Section 2.6. The network in Falun is limited by a 10 Mbps (uplink
and downlink) internet backbone.

Clients on the Internet connect to Toaster in Falun via DNS res-
olution as described in Section 2.4. Toaster also hosts the NRS used
by all the nodes in Falun and Kista. Port forwarding is configured
at the firewall in Falun towards Toaster for ports used by the NetInf
service and the NRS.

The server hardware used for the NetInf routers has a quad-core
Intel Xeon E5-2407 v2 2.4 GHz processor, 24 GB of memory and
a 480 GB read intensive Solid State Drive. The software for the

NetInf routers is written in Erlang and the streaming application is
Android-based.

3.2. Tests and Measurements

During the field test in Falun, we performed end-to-end playback
delay measurements for the NetInf live video streaming system.
These tests were performed using different connections (local WiFi
in Falun, Telco WiFi in Falun, Kista WiFi, 3G/4G) for the recording
and playing clients. For comparison with commercial streaming ser-
vices we also performed end-to-end playback delay measurements
for live streaming on Twitch and YouTube.

The field tests were performed with up to about 20 Android
mobile devices. To get a measure of how the system scales with
a very large number of clients we also performed tests with emu-
lated clients. More specifically, here we measured the aggregation
efficiency of a NetInf router across the 10 Mbps bottleneck link be-
tween Kista and Falun (the VPN tunnel) when a huge number of
clients access the same live video stream.

The NetInf routers can be configured to generate several differ-
ent kinds of logs. During the field tests they logged the transmit and
receive throughput and the CPU load. We also performed qualita-
tive testing in Falun to check the robustness of the system. Here we
tested the system with several recording clients publishing content at
the same time and several playing clients accessing a live stream at
the same time.

3.3. Results

Table 2 and Table 3 show the playback delay measurements recorded
for NetInf and Twitch/YouTube live video streaming, respectively.
The tests were performed such that the recording client and the play-
ing clients are not geographically co-located (the recording device
was in Falun while the playing devices were in Kista). The mea-
surements show that NetInf live video streaming achieves playback
delays similar to what the commercial streaming services offer to-
day. We do note however that both NetInf and commercial streaming
services can be configured to achieve lower delays if needed.

Table 2. Playback delay (in seconds) of NetInf live video streaming
Recording client Streaming client connected to:
connected to: Local WiFi Kista WiFi HSPA+ 4G
Local WiFi 13.37 12.40 12.92 21.50
4G 17.18 14.18 15.10 16.40
Telco WiFi 13.60 16.70 22.20 18.10

Table 3. Playback delay (in seconds) of Twitch/YouTube live video
streaming

Test run #
1 2 3 4 5 6

Twitch 14.28 13.20 12.48 16.79 12.59 12.39
YouTube 22.38 21.92 16.17 17.93 16.21 24.63

Figure 4 shows the results of measurements performed with em-
ulated clients to measure the aggregation efficiency of the NetInf
router. Here a single recording device published content to Toaster
in Falun and the emulated clients were run in Kista. The results show
that with the hardware used as mentioned in Section 3.1, the Net-
Inf router can aggregate video traffic (roughly 1 Mbps for a video

stream) from 2000 clients with a CPU utilization of around 50%.
Through extrapolation it can be deduced that the Netinf router can
aggregate video traffic from roughly 4000 clients when completely
loaded.

0

10

20

30

40

50

60

70

80

90

100

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000

C
P

U
 u

ti
liz

a
ti
o

n
 (

%
)

B
a
n

d
w

id
th

 u
ti
liz

a
ti
o
n

 o
n

 l
in

k
s
 w

it
h

n

o
n

-a
g

g
re

g
a

te
d
 t
ra

ff
ic

 (
M

b
p

s
)

No. of clients served

Bandwidth utilization on links with non-aggregated traffic (Mbps)

CPU utilization (%)

Bandwidth on link with aggregated traffic = 10 Mbps
Total bandwidth on links with non-aggregated traffic = 2 Gbps

Fig. 4. Aggregation efficiency of the NetInf router

In the first of the qualitative tests, checking the general function-
ality and performance of the system, we let about ten of the Android
phones simultaneously publish live video streams. Figure 5 shows
the network and CPU performance during this test for ‘Toaster’, the
main NetInf router. During this time interval, the average NetInf
PUBLISH rate was about 2 per second. We can see from the perfor-
mance graph that this test poses a quite low load on the NetInf router.
The average CPU load (in total for all four cores) for this time period
is about 4 %, and the average network receive load (RX, including
the video sent by the publishers) is about 7.8 Mbit/s.

In the second qualitative test, we let one Android client publish
a live stream, while most of the other watched that stream. Figure 6
shows as expected that the network transmit load dominates (TX,
with average 9.4 Mbit/s, including the video sent to the clients) over
receive load (RX, with average 2.2 Mbit/s) for the same router as

 0

 5

 10

 15

 20

 25

12:04 12:06 12:08 12:10 12:12 12:14 12:16 12:18 12:20 12:22
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

M
b

/s

C
P

U
 L

o
a

d

Time of day

Network TX
Network RX

CPU load
Network TX (ave/min)
Network RX (ave/min)

CPU load (ave/min)

Fig. 5. Network and CPU load with many publishers.

 0

 5

 10

 15

 20

 25

 30

 35

14:35 14:36 14:37 14:38 14:39 14:40
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

M
b

/s

C
P

U
 L

o
a

d

Time of day

Network TX
Network RX

CPU load
Network TX (ave/min)
Network RX (ave/min)

CPU load (ave/min)

Fig. 6. Network and CPU load with many viewers.

above. The average CPU load for the time interval is about 5 %, and
the average NetInf GET count is 5.6 per second, implying at most
11 active clients receiving from this particular router.

4. DISCUSSION

In this section we discuss practical experiences we gained from do-
ing the field test in Falun and technical issues such as the scalability
of ICN technology.

4.1. Experiences from doing the field test

In order to successfully perform this field test at a World Champi-
onship event, two major challenges had to be addressed. The first
one was to get approval to install our test equipment at the event
venue, which was solved through good internal contacts with event
organizers and network providers serving the event. The second one
was to ensure development of sufficiently stable software prototypes
for the test. For the needed software development, we partnered with
a student project course at a well-renowned university involving 13
undergraduate students for a full semester. We acted as customer and
provided technical supervision for them.

After these thorough preparations, the field test was carried out
without major issues. The system worked very well; for example,
the NetInf routers have been running for months and the Android
clients are very easy to distribute and install via a download link on
a web page.

It is important that feedback on if things have been published is
provided by the application to the user. When publishing or view-
ing didn’t work it was in most of the cases due to bad connectivity
(usually WiFi problems). The user would benefit from having more
information directly in the app about the current connectivity status.

4.2. ICN and global flash crowds

Current CDNs work well for provisioned media distribution, e.g. TV
and VoD streaming services, but do not work very well when the de-
mand for the services is not known. Even large corporations like
Apple and BMW have had to see their webcasts of live events break
down due to unexpected large crowds wanting to see the event. This
has happened even though the events were planned for long in ad-
vance and using state of the art CDN providers. For true flash crowds

like when a video from a single user’s Android phone goes viral there
are no solutions that scale to global audiences.

While we have only performed a limited field test with the live
video streaming NetInf technology, by combining those results with
those we have from the scalablity and the Twitch/YouTube tests we
think the scalability properties of ICN technology in general and
NetInf in particular look very promising. With the field test we have
shown that the technology, e.g. aggregation and caching, works as
expected.

We have also shown that our simple unoptimized prototype per-
forms at least as well as current publicly available services, e.g.
Twitch or YouTube Live. With the hardware we used, as described
in Section 3.1, we can aggregate more than 2000 clients on one
router. This means that if we have a three level hierarchy we can,
with the prototype boxes we have today, stream to a global audi-
ence of 8 billion users from one Android phone without having to
do any preconfiguration of the network. That can be compared with
the servers needed for today’s upload services. In an ICN network
no pre-subscriptions are needed.

5. CONCLUSIONS

We presented a live video steaming system developed based on
the NetInf architecture. It includes ICN features including naming,
caching, request aggregation, searching on metadata, together with
an Android mobile application for recording and viewing the video
streams in real time. We conducted a field test in the Nordic Ski
World Championship 2015 in Falun, Sweden. Experimental results
show that our system can achieve live video streaming delay compa-
rable with popular public services, e.g. Twitch and YouTube, even
though optimization has not yet been enforced. We also demon-
strated that our system is able to aggregate requests from large
amount of clients efficiently without any additional network configu-
ration or pre-subscriptions. In the future, we plan to further improve
the system performance by optimizing caching and scale up the ex-
periments to include more number of users.

6. ACKNOWLEDGMENTS

We would especially like to acknowledge the student project at Up-
psala University that developed most of the software that was used
for these experiments. We are also very grateful to the people at the
Lugnet Ski Stadium in Falun, Sweden, that made this field test pos-
sible and helped us in many ways. This research has in part been
funded by the EIT ICT Labs activities “14082 Networks for Future
Media Distribution” and “14326 MOSES – Mobile Opportunistic
Services for Experience Sharing”.

7. REFERENCES

[1] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and
B. Ohlman, “A survey of information-centric networking,”
Communications Magazine, IEEE, vol. 50, no. 7, pp. 26–36,
July 2012.

[2] Christian Dannewitz, Dirk Kutscher, Börje Ohlman, Stephen
Farrell, Bengt Ahlgren, and Holger Karl, “Network of informa-
tion (netinf)–an information-centric networking architecture,”
Computer Communications, vol. 36, no. 7, pp. 721–735, 2013.

[3] D. Kutscher, S. Farrell, and E. Davies, “The NetInf Protocol,”
Internet-Draft draft-kutscher-icnrg-netinf-proto-01, Internet En-
gineering Task Force, Feb. 2013, Work in progress.

[4] S. Farrell, D. Kutscher, C. Dannewitz, B. Ohlman, A. Keranen,
and P. Hallam-Baker, “Naming Things with Hashes,” RFC 6920
(Proposed Standard), Apr. 2013.

