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Internet of Things (IoT) applications transcend traditional telecom to 
include enterprise verticals such as transportation, healthcare, agriculture, 
energy and utilities. Given the vast number of devices and heterogeneity 
of the applications, both ICT infrastructure and IoT application providers 
face unprecedented complexity challenges in terms of volume, privacy, 
interoperability and intelligence. Cognitive automation will be crucial to 
overcoming the intelligence challenge. 

The IoT is built on the concept of cross-
domain interactions between machines that 
can communicate with each other without 
human involvement. These interactions 
generate a vast number of heterogeneous 
data streams full of information that must be 
analyzed, combined and acted on. 

■  To be successful, providers of ICT infrastructure 
and IoT applications need to overcome interlinking 
challenges relating to volume, privacy, interoperability 
and intelligence. Doing so requires a multifaceted 
approach involving concepts and techniques drawn 
from many disciplines, as illustrated in Figure 1. 

Research in 5G radio, network virtualization and 

distributed cloud computing primarily addresses 
the volume challenge, by evolving network 
infrastructure and application architecture 
design to increase the amount of resources 
available to applications (throughput, compute 
and store resources, for example). Meanwhile, 
the privacy and interoperability challenges are 
being addressed with a mix of R&D efforts and 
standardization activities that are leading to novel 
concepts and techniques, such as differential 
privacy, k-anonymity algorithms, secure multiparty 
computation, ontology matching, intelligent service 
discovery, and context-aware middleware layers.

Addressing the intelligence challenge requires 
the development and use of intelligent decision 
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support systems (DSSs) – interactive computer 
systems that use a combination of artificial 
intelligence and machine learning methods known 
as machine intelligence (MI) to assist and enhance 
human decision making. In response to this 
need, Ericsson has built a cognitive automation 
framework to support development and operation 
of intelligent DSSs for large-scale IoT-based 
systems. The use cases are not only the traditional 
telecom ones (such as operations support systems/
business support systems automation), but new 
ones in domains such as transportation, robotics, 
energy and utilities, as well. 

The main benefit of our cognitive automation 
framework is that it reduces DSS development and 
deployment time by reusing as much knowledge 
as possible (such as domain models, behaviors, 
architectural patterns, and reasoning mechanisms). 
It also cuts operational costs for IoT-based system 
management by making it possible during runtime 
for a DSS to decide automatically how to adapt 
to changes in its context and environment, with 
minimal or no human interaction. 

While DSSs predominantly address the 
intelligence challenge, they can also be used to 
address privacy, volume and interoperability 
challenges. For example, IoT devices need 
intelligence to learn to trust each other. 
Management of network infrastructure may also 
benefit from intelligent systems, to handle the 
large volumes of transmitted data more efficiently. 
Finally, systems that use different standards and/
or APIs can use MI to interface with each other, by 
using language games, for example.

Architectural components and structure  
of the knowledge base 
A high-level conceptual view of the architecture of 
our framework is depicted in Figure 2. The main 
components are the observer, the knowledge base, 
the reasoner and the interpreter.

The observer is responsible for pushing 
knowledge from the environment to the knowledge 
base. This is done by first deriving a symbolic 
representation of data using model transformation 

 CPRIoEth – CPRI over Ethernet | 

Figure 1  
Key challenges (in gray)  
and approaches to 
addressing them (in pink)
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rules that identify the relation between raw data 
coming from the IoT-based system and a symbolic 
representation of the captured data. The next step is 
to perform ETL (extract, transform, load), followed 
by a semantic analysis of the obtained data.

The knowledge base contains a formalized 
description of general concepts that can be used 
across domains to facilitate interoperability, as 
well as domain-specific concepts (transportation, 
for example). In addition, the knowledge base 
contains the possible discrete states of the system, 
potential transitions between states, meta-
reasoning expertise and model transformation 
rules. Ontologies in RDF/OWL semantic markup 
language are among the possible formats of the 
knowledge stored in the knowledge base [1]. 

Domain experts can enter domain and reasoning 
expertise directly into the knowledge base. Since 
the behavior of the environment is dynamic and 
unpredictable, the knowledge base is continuously 
updated with knowledge coming from the observer 
and the reasoner.

Most of the framework intelligence comes from the 
reasoner, which contains general purpose inference 
mechanisms that allow it to draw conclusions from 
information (propositions, rules, and so on) stored 
in the knowledge base, and problem-specific tools 
that implement various MI tasks such as machine 
learning, planning, verification, simulation, and 
so on. By relating a goal/mission query to meta-
reasoning expertise, the inference engine selects an 
appropriate method or problem solver, and derives 

Figure 2  
A high-level, conceptual 

view of the framework 
architecture
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relevant input for it using model transformation rules. 
The result produced by the selected problem solver 
can be presented to the user, sent to the interpreter 
for actuation, or fed back into the inference engine to 
reinforce the knowledge base content. 

A goal query can be initiated by the user or  
the inference engine itself based on a comparison 
between expected and actual system states.  
For instance, if the goal query is to verify a 
certain system property (safety, for example), the 
inference engine will look in the knowledge base 
and deduce that a verification method should 
be used to check that the system satisfies the 
required property. Similarly, if the goal query is 
to reach a certain goal, the inference engine will 
look up the knowledge base and deduce that a 
planner should be used to generate a strategy 
to reach that goal. Since most of the planners 
accept Planning Domain Definition Language 
(PDDL) [2] as their input, the inference engine 
looks up corresponding model transformation 
rules to translate the problem in PDDL. The 
interpreter takes the generated strategy and 
transforms it into actuation instructions for the 
connected things. When executing the strategy, 
the interpreter works closely with the reasoner. 
In the event of any changes in the expected state 
of the system, the reasoner sends a replanning 
request to the planner. The generated strategy 
can be presented to the user for approval before 
actuation, if required.

The reasoner can perform automatic knowledge 
acquisition using machine learning techniques 
that may extract insights (such as categorization, 
relations and weights) from training sets in the 
form of documentation, databases, conversation 
transcriptions or images. The reasoner can explain 
the reasons behind recommending and performing 
a given set of actions, trace back to the origins of the 
decisions, and inform the user (and other systems, 
if so desired) about actions planned for the future. 
The explanation can be made in a user-friendly 
manner by applying natural language processing, 
augmented reality and automatic speech synthesis 
and recognition, for example.

Application examples
Our research and experience show that 
there are a wide variety of ways in which our 
framework can be used to boost efficiency in 
different types of applications. Test Automation 
as a Service (TAaaS), automated scheduling of 
train logistics services, smart metering, ticket 
book systems and Everything as a Service 
(XaaS) are just a few examples. 

TAaaS 
Our TAaaS project addressed the product 
development life cycle and software-testing 
activities. Testing for products typically involves 
numerous tools for test design, test execution and 
test reporting, along with management software 
tools, put together in a toolchain. Toolchain 
configuration is an expensive process that often 
takes one to two days to prepare, depending on the 
product being tested. Reconfiguring a toolchain 
to test another product is an even more time-
consuming activity. The TAaaS system automated 
the configuration of these toolchains based on user 
requirements and created virtual workspaces in 
a data center, eliminating the need for expensive, 
manual configuration. In this case, the framework 
contained a knowledge base of software tools and 
their dependencies.

  THE REASONER  
CAN PERFORM  
AUTOMATIC KNOWLEDGE 
ACQUISITION USING 
MACHINE LEARNING 
TECHNIQUES SUCH  
AS CATEGORIZATION, 
RELATIONS AND  
WEIGHTS   
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Automated scheduling of train logistics services 
In this project, we created a concept for a fully 
automated logistics transportation system. 
The system consisted of several actors (such as 
trains, loading cranes and railroad infrastructure 
elements) equipped with sensors and actuators, 
and coordinated by intelligent software. The main 
goal was to investigate the potential benefits of 
combining factual and behavioral knowledge to 
raise the level of abstraction in user interaction. A 
user-specified, high-level objective such as “deliver 
cargo A to point B in time C” is automatically 
broken down to subgoals by the intelligent 
management system, which then creates and 
executes an optimal strategy to fulfill that objective 
through its ability to control corresponding 
connected devices. 

Smart metering
We used our framework to create an intelligent 
assistant to help Ericsson’s field engineers 
manage Estonia’s network of connected smart 
electricity meters. Its task was to automate 
troubleshooting and repair procedures by utilizing 
knowledge captured from the domain experts. 
By separating knowledge from the control logic, 
we made the system extendable so that new 
knowledge can be added to it over time. The 
representation comprises several decision trees 

and workflows that encode the root causes of 
various potential technical issues, processes for 
diagnosing and identifying them, and the steps in 
the corresponding repair procedure. Our project 
revealed that in this type of use case, the bulk of the 
work is in the manual acquisition and encoding of 
expert knowledge.

 
Ticket book
When managing and operating mobile networks, 
support engineers normally create tickets (issue 
descriptions) for problems classified as non-
trivial. Based on the assumption that the solution 
to an issue similar to another that has previously 
been dealt with will be similar, we created a 
system for semantic indexing and searching 
historical tickets. We used a vector space model 
to calculate a similarity score and sorted searched 
tickets according to their relevance to the current 
case. A similar technique was used to find 
technical documentation relevant to the case 
currently being solved. This use case relies on the 
availability of historical data (previous tickets) 
to automatically build a knowledge base that 
facilitates subsequent information retrieval and 
relevancy ranking.

XaaS
In our XaaS project, we developed an MI-assisted 
platform for service life cycle management. By 
leveraging technologies such as semantic web 
and automated planning, we presented how 
consumer services can be delivered automatically 
using underlying modular components known 
as microservices that can be reused across 
different application domains. This automation 
provides flexibility in service deployment and 
decommissioning, and reduces deployment time 
from months and weeks to minutes and seconds. 
The knowledge base comprised a specification 
of the domain used for service requirement 
formulation, predefined service definitions, the 
metadata of the service functional components, 
and the descriptions of the microservices that had 
been used to implement those components. 

  CONSUMER SERVICES 
CAN BE DELIVERED 
AUTOMATICALLY USING 
UNDERLYING MODULAR 
COMPONENTS KNOWN AS 
MICROSERVICES THAT CAN 
BE REUSED ACROSS 
DIFFERENT APPLICATION 
DOMAINS   
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Prototype implementation – transportation 
planning 
The automation of a transportation planning 
process is an excellent example of how our cognitive 
automation framework can be used to create an 
intelligent DSS. In this example, the DSS is used to 
automatically determine how to transport passengers 
or cargo at minimal cost (taking into account the 
distance traveled, the time needed to transport 
each passenger and piece of cargo, or the number of 
buses required for transportation) using connected 
vehicles (buses or trucks respectively). The answer 
for a particular task could be a plan that consists 
of a sequence of steps for the system to perform to 
reach the goal state. If the system determines that 
the task cannot be performed, the answer from the 
framework-based DSS could be the reason why, 

as well as a possible solution such as increasing the 
number of vehicles. The motivation behind using 
the framework for this particular use case was to 
demonstrate the decrease in the cost of design by 
building and reusing cross-domain knowledge 
specifically between people and cargo logistics.

Figure 3 provides an overview of the partially 
implemented prototype implementation of 
our framework-based DSS for transportation 
planning. (Work is still ongoing to implement 
missing components connecting the framework to 
the environment.) The knowledge base contains 
model transformation rules for PDDL and states 
and transition models that are based on a set 
of ontologies containing information for the 
particular transportation domain. The ontologies 
are organized in multiple layers of abstraction: one 
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which is cross-domain (the cyber-physical systems 
ontology in Figure 3); and one which is specific to 
intelligent transportation systems (ITSs), used for 
reasoning about transportation problems. 

This implementation assumes that the inference 
engine has already deduced that a planner should 
be used to solve the transportation planning 
problem using meta-reasoning expertise (from the 
knowledge base) and a user-specified goal. The other 
implemented component is the PDDL generator, 
which – given the PDDL transformation rules, states 
and transition files as input – generates files that are 
understandable for a PDDL planner. The source 
code of the implementation is available online [3].

As always, there is a direct relationship between 
the amount of knowledge to be formalized and 
the effort required to formalize it. Put simply, this 
means that the more non-formalized knowledge 
there is, the higher the operational costs will 
be in terms of time, human resource allocation 

and money. In the case of a transport schedule 
generation process, the benefit of using the 
framework to lower the cost of design is that 
it reduces the effort required to formalize the 
knowledge needed for the system to be automated.

Figure 4 shows the different types of knowledge 
used to generate a transportation plan for two use 
cases: transportation of passengers in buses and 
transportation of cargo in trucks. The transport 
network is viewed as a graph, with points of 
interest (POIs) as vertices and POI-connecting 
roads as edges. The “transportable entities” can be 
passengers or cargo, depending on the use case. 
Transitions are similar regardless of the route, 
number and type of transport agents (buses or 
trucks) and transportable entities. This means 
that reusing transitions across different transport 
planning use cases, and storing them as part of the 
“transition library” (see Figure 3), can reduce the 
cost of design. 

Figure 4  
Knowledge for  
transport plan  

generation

DOMAIN KNOWLEDGE

Route  

Transport agents

Transportable entities

Initial state

Transitions

Goal state

DESCRIPTION

Specification of route(s) as graph(s), which includes vertices, edges  
and edge-traversal costs (such as travel time and fuel spent).

Number of vehicles, vehicle IDs and vehicle capacity.

Number and ID of transportable entities (passengers, cargo).

The starting location of the transport agents  
and transportable entities.

The transitions that transport agents can perform. Current  
prototype implementation contains three transitions: pickup,  
drop, and move-to-next-coordinate.

Which criteria need to remain constant for the transport service  
to complete the specified route (usually this means that all  
transportable entities are picked up and dropped off at specific  
points along the route).
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We use a simple metric called the reusability 
index to measure reductions in the cost of design. 
The reusability index is the ratio of reused entities 
versus total entities in the knowledge input 
available to the PDDL generator to generate the 
plan. The ratio was 0.364 for the bus case and 0.251 
for the truck use case. This means that out of the 
total number of entities created for each case, 36.4 
percent were already available in the library for the 
bus case and 25.1 percent for the truck case. The 
contrast between the two can mainly be attributed 
to the difference of the route specification entities, 
as agents on both routes followed different paths. 
As the knowledge base becomes more populated, 
the reusability index will increase, which will in 
turn lead to a decrease in the development time of 
further custom ITS solutions. Our measurements 
also indicate that the reusability index can rise if the 
route specification is part of the PDDL generator, 
which can automatically generate the specification 
using data from a mapping service in conjunction 

with a routing library. The knowledge engineer 
could then only specify the desired waypoints (bus 
stops, for example), and the routes and graphs would 
be generated automatically by the PDDL generator. 

Conclusion 
IoT-based systems require a large number of 
decisions to be made in a short time, which in 
turn requires automation – not only in terms of 
infrastructure management, but also within the 
logic of the IoT applications themselves. A DSS is 
an essential tool in this context, owing to its ability 
to enhance human decision-making processes with 
MI based on behavioral models and information 
contained in the relevant data streams. 

Any system that requires automation in the 
decision-support process could be enhanced 
by our cognitive automation framework. It has a 
domain-agnostic, fixed architecture in which the 
only variable components are the knowledge base 
and the set of reasoning methods. By separating 
cross-domain knowledge from use-case-specific 
knowledge, the framework makes it possible to 
maximize reuse, enabling substantial savings 
in terms of design cost, and shortening time to 
market for custom-developed solutions. The set 
of reasoning methods is extensible and can be 
populated with the methods and tools that are 
best suited to specific tasks. The framework’s 
self-adaptation is supported by meta-reasoning 
and continuous reinforcement of the internal 
knowledge over time. In the future, we plan to 
extend the framework with analysis of hypothetical 
situations and an intuitive user interface for both 
experts and less experienced users. 

Terms and abbreviations  
API – application programming interface | CPS – cyber-physical system | DSS – decision support system | ETL – 
extract, transform, load | IoT – Internet of Things | ITS – intelligent transportation system | MI – machine intelligence 
| OWL – Web Ontology Language | PDDL – Planning Domain Definition Language | POI – point of interest | RDF – 
Resource Description Framework | TAaaS – Test Automation as a Service | XaaS – Everything as a Service

  THE FRAMEWORK’S 
SELF-ADAPTATION IS 
SUPPORTED BY META-
REASONING AND 
CONTINUOUS 
REINFORCEMENT OF THE 
INTERNAL KNOWLEDGE 
OVER TIME   
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