
ERICSSON
TECHNOLOGY

PRIVACY-AWARE
MACHINE LEARNING

C H A R T I N G T H E F U T U R E O F I N N O V A T I O N | # 0 9 ∙ 2 0 1 9

✱ PRIVACY-AWARE MACHINE LEARNING PRIVACY-AWARE MACHINE LEARNING ✱

2 O C T O B E R 2 1 , 2 0 1 9 ✱ E R I C S S O N T E C H N O L O G Y R E V I E WE R I C S S O N T E C H N O L O G Y R E V I E W ✱ O C T O B E R 2 1 , 2 0 1 9 3

Federated learning makes it possible to train machine learning models
without transferring potentially sensitive user data from devices or local
deployments to a central server. As such, it addresses privacy concerns
at the same time that it improves functionality. Depending on the complexity
of the neural network, it can also dramatically reduce the amount of data
needed while training a model.

KONSTANTINOS
VANDIK AS,
SELIM ICKIN,
GAURAV DIXIT,
MICHAEL BUISMAN,
JONAS ÅKESON

Reliance on artificial intelligence (AI) and
automation solutions is growing rapidly in the
telecom industry as network complexity
continues to expand. The machine learning
(ML) models that many mobile network
operators (MNOs) use to predict and solve
issues before they affect user QoE are just
one example.

■ An important aspect of the 5G evolution is the
transformation of engineered networks into
continuous learning networks in which self-
adapting, scalable and intelligent agents can work
independently to continuously improve quality and
performance. These emerging “zero-touch
networks” are, and will continue to be, heavily
dependent on ML models.

The real-world performance of any ML model
depends on the relevance of the data used to train it.

Conventional ML models depend on the mass
transfer of data from the devices or deployment sites
to a central server to create a large, centralized
dataset. Even in cases where the computation is
decentralized, the training of conventional ML
models still requires large, centralized datasets and
misses out on using computational resources that
may be available closer to where data is generated.

While conventional ML delivers a high level of
accuracy, it can be problematic from a data security
perspective, due to legal restrictions and/or privacy
concerns. Further, the transfer of so much data
requires significant network resources, which means
that lack of bandwidth and data transfer costs can be
an issue in some situations. Even in cases where all
the required data is available, reliance on a
centralized dataset for maintenance and retraining
purposes can be costly and time consuming.

For both privacy and efficiency reasons, Ericsson

believes that the zero-touch networks of the future
must be able to learn without needing to transfer
voluminous amounts of data, perform centralized
computation and/or risk exposing sensitive
information. Federated learning (FL), with its ability
to do ML in a decentralized manner, is a promising
approach.

To better understand the potential of FL in a
telecom environment, we have tested it in a number
of use cases, migrating the models from
conventional, centralized ML to FL, using the
accuracy of the original model as a baseline. Our
research indicates that the usage of a simple neural
network yields a significant reduction in network
utilization, due to the sharp drop in the amount of
data that needs to be shared.

As part of our work, we have also identified the
properties necessary to create an FL framework that
can achieve the high scalability and fault tolerance
required to sustain several FL tasks in parallel.
Another important aspect of our work in this area
has been figuring out how to transfer an ML model

that addresses a specific and common problem,
pretrained within an FL mechanism on existing
network nodes to newly joined network nodes, so
that they too can benefit from what has been learned
previously.

The concept of federated learning
The core concept behind FL is to train a centralized
model on decentralized data that never leaves the
local data center that generated it. Rather than
transferring “the data to the computation,” FL
transfers “the computation to the data.”[1]

In its simplest form, an FL framework makes use
of neural networks, trained locally as close as
possible to where the data is generated/collected.
Such initial models are distributed to several data
sources and trained in parallel. Once trained, the
weights of all neurons of the neural network are
transported to a central data center, where federated
averaging takes place and a new model is produced
and communicated back to all the remote neural
networks that contributed to its creation.

WITH LOW NETWORK FOOTPRINT

Privacy-aware
machine learning

Terms and abbreviations
AI – Artificial Intelligence | AUC – Area Under the Curve | FL – Federated Learning | ML – Machine
Learning | MNO – Mobile Network Operator | ROC – Receiver Operating Characteristic

✱ PRIVACY-AWARE MACHINE LEARNING PRIVACY-AWARE MACHINE LEARNING ✱

4 O C T O B E R 2 1 , 2 0 1 9 ✱ E R I C S S O N T E C H N O L O G Y R E V I E WE R I C S S O N T E C H N O L O G Y R E V I E W ✱ O C T O B E R 2 1 , 2 0 1 9 5

Figure 2 illustrates the basic system design.
A federation is treated as a task run-to-completion,
enabling a single resource definition of all
parameters of the federation that is later deployed to
different cloud-native environments. The resource
definition for the task deals both with variant and
invariant parts of the federation.

The variant parts handle the characteristics of the
FL model and its hyperparameters. The invariant
parts handle the specifics of common components
that can be reused by different FL tasks. Invariant
parts include a message queue, the master of the FL
task and the workers to be deployed and federated in
different data centers.

Workers (processes running in local deployments)
are tightly coupled with the underlying ML platform
that is used to train the model, which is immutable
during the federation. In our FL experiments, we
selected TensorFlow to train the neural network,
which is designed to be interchangeable with other
ML platforms such as PyTorch. Communication
between the master and the workers is protected
using Transport Layer Security encryption with
one-time generated public/private keys that are
discarded as soon as an FL task is completed.

 Invariant components can be reused by different
FL tasks. FL tasks can run sequentially or in parallel
depending on the availability of resources. Master

and worker processes are implemented as stateless
components. This design choice leads to a more
robust framework, since it allows for an FL task to
fail without affecting other ongoing FL tasks.

Fault tolerance
To reduce the complexity of the codebase for both
the master of the FL task and the workers and to
keep our implementation stateless, we chose a
message bus to be the single point of failure in the
design of our FL framework. This design choice is
further motivated by the research into creating
highly scalable and fault-tolerant message buses by
combining leader-election techniques and/or by
relying on persistent storage to maintain the state of
the message queue in case of a failure [4].

The message exchange between the master of the
FL task and the workers is implemented in the form
of assigned tasks such as “compute new weights” and
“average weights.” Each task is pushed into the
message queue and has a direct recipient. The
recipient must acknowledge that it has received the
task. If the acknowledgement is not made, the task
remains in the queue. In case of a failure, messages
remain in the message queue while Kubernetes
restarts the failed process. Once the process reaches
a running state again, the message queue
retransmits any unacknowledged tasks.

Techniques such as secure aggregation [2] and
differential privacy [3] can be applied to further
ensure the privacy and anonymity of the data origin.

FL can be used to test and train not only on
smartphones and tablets, but on all types of devices.
This makes it possible for self-driving cars to train on
aggregated real-world driver behavior, for example,
and hospitals to improve diagnostics without
breaching the privacy of their patients.

Figure 1 illustrates the basic architecture of an FL
life cycle. The light blue dashed lines indicate that
only the aggregated weights are sent to the global
data lake, as opposed to the local data itself, as is the
case in conventional ML models. As a result, FL
makes it possible to achieve better utilization of
resources, minimize data transfer and preserve the
privacy of those whose information is being
exchanged.

The main challenge with an FL approach is that
the transition from training a conventional ML

model using a centralized dataset to several smaller
federated ones may introduce a bias that impacts the
accuracy originally achieved by using a centralized
dataset. The risk for this is greatest in less reliable
and more ephemeral federations that span over to
mobile devices.

It is reasonable to expect data centers used by
MNOs to be significantly more reliable than devices
in terms of data storage, computational resources
and general availability. However, it is important to
ensure high fault tolerance, as corresponding
processes may still fail due to lack of resources,
software bugs or other issues.

Federated learning framework design
Our FL framework design concept is cloud-native,
built on a federation of Kubernetes-based data
centers located in different parts of the world.
We assume restricted access to allow for the
execution of certain processes that are vital to FL.

Figure 2 Basic design of an FL platform

Message bus

FL master FL worker 1 FL worker 2 FL worker 3 FL worker N...

Figure 1 Overview of federated learning

Training
(global)

Training

Inference

Data lake
(global)

Pipelines
Data

Model distribution
Aggregated weights

Ericsson

Customer

Local deployment 1

Training

Inference

Local deployment 2

Training

Inference

Local deployment 3

Local
storage

Local
storage

Local
storage

✱ PRIVACY-AWARE MACHINE LEARNING PRIVACY-AWARE MACHINE LEARNING ✱

6 O C T O B E R 2 1 , 2 0 1 9 ✱ E R I C S S O N T E C H N O L O G Y R E V I E WE R I C S S O N T E C H N O L O G Y R E V I E W ✱ O C T O B E R 2 1 , 2 0 1 9 7

Preventive maintenance use case
Hardware fault prediction is a typical ML use case
for an MNO. In this case, the aim is to predict
whether there will be a hardware fault at a radio unit
within the next seven days based on data generated
in the eight-week interval preceding the prediction
time. The inputs to the ML model consist of more
than 500 features that are aggregations of multiple
performance management counters, fault
management data such as alarms, weather data and
the date/time since the hardware has been active in
the field.

Three training scenarios
We performed the experiments in three scenarios –
centralized ML, isolated ML and FL.

Centralized ML is the benchmark scenario. The
datasets from all four worker nodes are transferred
to one master node, and model training is performed
there. The trained model is then transferred and
deployed back to the four worker nodes for inference.
In this scenario, all worker nodes use exactly the
same pretrained ML model.

In the isolated ML scenario, no data is transferred
from the worker nodes to a master node. Instead,
each worker node trains on its own dataset and
operates independently from the others.

In the FL scenario, the worker nodes train on their
individual datasets and share the learned weights
from the neural network model via the message
queue. The saturation of the model accuracies is
achieved after 15 rounds of the weight-sharing and
weight-averaging procedure. In this way, the worker
nodes can learn from each other without transferring
their datasets.

The properties of each training scenario are
summarized in Figure 3, Table A.

Accuracy results
Table B in Figure 3 presents the results in the form of
median ROC AUC (receiver operating characteristic
area under the curve) scores obtained through more
than 100 independent experiments. The scores
achieved in the FL scenario are similar to those
achieved in the centralized and isolated ones, while
the variance of the FL scores is significantly lower
compared with the other two scenarios.

The results in Table B show that it is worker 1
(south) that benefits from FL. They also suggest that
an isolated ML approach can be recommended in
cases where the individual datasets have enough
data for training. The only drawback is that because
the isolated nodes never receive any information
from other nodes, they will be more conservative in
their response to changes in the data, with the risk of
potentially higher blind spots in the individual
datasets.

The impact of adding new workers
To facilitate the adding of new workers at a later time,
information about the current round must be
maintained in the message exchange between the
master and the workers. When an FL task starts, all
workers register to round ID 0, which triggers the
master to initialize the random weights and
broadcast the same distribution to all workers. All
workers train in parallel and contribute to the same
training round. As the rounds increase, the federated
model’s maturity increases until a saturation point is
reached.

If the current round ID is greater than 0, the master
is aware that the process of averaging of weights
has taken place at least once, which means that the
model is not at a random initial state. When a new
worker joins the FL task, it sends its round ID as 0.

Figure 3 Tables relating to the hardware fault prediction use case

Centralized Isolated Federated

Centralized median (std) Isolated median (std) Federated median (std)

Downlink consumption Uplink consumption

NoPrivacy preserved

Use of overall data

Data transfer cost

Weight transfer cost

Yes Yes

0.91 (0.15)Worker 1 (region 1) 0.89 (0.12) 0.95 (0.05)

0.92 (0.8)Worker 2 (region 2) 0.93 (0.08) 0.93 (0.03)

0.95 (0.16)Worker 3 (region 3) 0.95 (0.13) 0.97 (0.07)

0.97 (0.13)Worker 4 (region 4) 0.97 (0.11) 0.96 (0.05)

0.93 (0.13)Overall 0.93 (0.11) 0.95 (0.05)

Federated (MB)Centralized (MB)

Table D – Network footprint

Table C – Network footprint formulas for each training scenario

Table B – ROC AUC scores of workers throughout three scenarios

Table A – Summary of scenario definitions

FL message size (MB) Rounds Rounds

Master 0 0

Worker ID 0 0

Master N * R * Model₀ N * R * Model₀

Worker ID R * Model₀ R * Model₀

i: worker ID
N: number of workers

R: number of rounds needed until accuracy convergence
Model₀: Size of ML model

n
i
: size of dataset in worker ID

Worker ID Model₀ n
i

Master
Centralized ML

Isolated ML

FL

∑ N * Model₀
N

i=0

n
i

Yes No Yes

High None None

None None Low

Workers

19.22,000 0.26 15 4

✱ PRIVACY-AWARE MACHINE LEARNING PRIVACY-AWARE MACHINE LEARNING ✱

8 O C T O B E R 2 1 , 2 0 1 9 ✱ E R I C S S O N T E C H N O L O G Y R E V I E WE R I C S S O N T E C H N O L O G Y R E V I E W ✱ O C T O B E R 2 1 , 2 0 1 9 9

Further reading
 ❭ Privacy Preserving QoE Modeling using Collaborative Learning, October 21, 2019, Selim Ickin,

Konstantinos Vandikas, and Markus Fiedler, in the 4th Internet-QoE Workshop: QoE-based Analysis and
Management of Data Communication Networks (Internet-QoE’19), ACM, New York, NY, USA, available at:
https://doi.org/10.1145/3349611.3355548

References
1. Communication-Efficient Learning of Deep Networks from Decentralized Data, February 28, 2017, H.

Brendan McMahan et al., available at: https://arxiv.org/pdf/1602.05629.pdf

2. Google, Practical Secure Aggregation for Privacy-Preserving Machine Learning, 2017, K. Bonawitz et al.,
available at: https://ai.google/research/pubs/pub47246/

3. Deep Learning with Differential Privacy, October 25, 2016, M. Abadi et al., available at:
https://arxiv.org/pdf/1607.00133.pdf

4. Distributed Systems: Principles and Paradigms, 2002, A. Tanenbaum et al., available at:
https://www.amazon.com/Distributed-Systems-Principles-Andrew-Tanenbaum/dp/0130888931

of message exchanges is equal to the number of
regions where the compressed version of the dataset
is transferred – that is, the number of local
deployments.

In FL, on the other hand, there are multiple
message exchanges that consist of rounds, which
refers to the number of training phases required
until the accuracy of the model converges. Message
size in FL is determined by the serialized vector that
contains the neural weights, which is directly related
to the size of the neural network.

Table D in Figure 3 presents the network footprint
results for the preventive maintenance use case,
showing that the FL approach yielded a one order of
magnitude reduction in data volume compared with
the centralized approach – a drop from 2,000MB to
19.2MB. This dramatic reduction can be attributed
to the simplicity of the neural network and the
substantially smaller amount of data that needs to be
transferred in the FL scenario. In the long term, this
significantly smaller network footprint will enable
the creation of a more complex neural network with
the ability to detect more complex patterns in the
dataset.

Conclusion
While conventional machine learning (ML) models
provide many benefits to mobile network operators,
particularly in terms of ensuring consistent QoE, the
large data transfer that they require results in a
substantial network footprint and can lead to privacy
issues. By bringing “the computation to the data”
instead of transferring “the data to the computation,”
federated learning (FL) makes it possible to
overcome those challenges by training a centralized
model on decentralized data.

Ericsson’s research in this area has demonstrated
that it is possible to migrate from a conventional ML
model (trained using a completely centralized
dataset) to a federated one, significantly reducing
data transfer and protecting privacy while achieving
on-par accuracy. In light of our findings, we believe
that FL has an important role to play in the ongoing
automation of the telecom sector and in the
transition to the zero-touch networks of the future.

The master, whose latest round ID is greater than 0,
recognizes the worker as new and immediately
shares the latest state of the model with the new
worker after the first handshake.
Figure 4 illustrates how accuracy persists in the FL
model when a new worker joins. In this example,
three workers numbered 0, 1 and 2 contribute to the
initial training phase of the model, receive the same
randomized weight matrices from the master node,
and train on the same model. As time passes,
accuracy reaches a saturation point. Later, worker 3

joins the FL task. However, since worker 3 is at its
first round, it is allowed to use the saturated model,
but not allowed to contribute in the weight
aggregation. Instead, its weights are discarded.

Network footprint comparison
Table C in Figure 3 presents a set of formulas that
can be used to determine the network footprint for
centralized ML, isolated ML and FL scenarios.
When training an ML model in a conventional way
(as in centralized ML), it is assumed that the number

Figure 4 AUC scores before and after a new worker joins the FL task

1.0

0.9

0.8

0.7

0.6

0.5

7000

Initial
training

Saturation
point reached

Stability
persists

7500 8000
Time +1.55802e9

8500 9000

0
1
2
3

Worker 3 joins the
federation and deploys
the pretrained model.

https://doi.org/10.1145/3349611.3355548
https://arxiv.org/pdf/1602.05629.pdf
https://ai.google/research/pubs/pub47246/
https://arxiv.org/pdf/1607.00133.pdf
https://www.amazon.com/Distributed-Systems-Principles-Andrew-Tanenbaum/dp/0130888931

✱ PRIVACY-AWARE MACHINE LEARNING

10 E R I C S S O N T E C H N O L O G Y R E V I E W ✱ O C T O B E R 2 1 , 2 0 1 9

Konstantinos
Vandikas
◆ is a principal researcher
at Ericsson Research
whose work focuses on
the intersection between
distributed systems and
AI. His background is
in distributed systems
and service-oriented
architectures. He has
been with Ericsson
Research since 2007,
actively evolving research
concepts from inception to
commercialization. Vandikas
has 23 granted patents and
over 60 patent applications.
He has authored or
coauthored more than 20
scientific publications and
has participated in technical
committees at several
conferences in the areas
of cloud computing, the
Internet of Things and AI.
He holds a Ph.D. in computer
science from RWTH Aachen
University, Germany.

Selim Ickin
◆ joined Ericsson Research
in 2014 and is currently

a senior researcher in
the AI department in
Sweden. His work has been
mostly around building
ML prototypes in diverse
domains such as to improve
network-based video
streaming performance, to
reduce subscriber churn rate
for a video service provider
and to reduce network
operation cost. He holds
a B.Sc. in electrical and

electronics engineering from
Bilkent University in Ankara,
Turkey, as well as an M.Sc.
and a Ph.D. in computing
from Blekinge Institute of
Technology in Sweden. He
has authored or coauthored
more than 20 publications
since 2010. He also has
patents in the area of ML
within the scope of radio
network applications.

Gaurav Dixit
◆ joined Ericsson in
2012. He currently heads
the Automation and AI
Development function for
Business Area Managed

Services. In earlier roles he
was a member of the team
that set up the cloud product

business within Ericsson. He
holds an MBA from the Indian
Institute of Management
in Lucknow, India, and
the Università Bocconi
in Milan, Italy, as well as a
B.Tech. in electronics and
communication engineering
from the National Institute
of Technology in Jalandhar,
India.

Michael Buisman
◆ is a strategic systems
director at Business Area
Managed Services whose
work focuses on ML and AI.
He joined Ericsson in 2007
and has more than 20 years
of experience of delivering

new innovations in the
telecom industry that drive
the transition to a digital
world. For the past two years,
Buisman and his team have
been developing a managed
services ML/AI solution that
is now being deployed to
several customers globally.
Buisman holds a BA from the
University of Portsmouth
in the UK and an MBA from
St. Joseph’s University in
Philadelphia in the US.

Jonas Åkeson
◆ joined Ericsson in 2005.
In his current role, he drives
the implementation of
AI and automation in the
three areas that integrate
Ericsson’s Managed
Services business. He holds
an M.Sc. in engineering
from Linköping Institute of
Technology, Sweden, and a
higher education diploma
in business economics
from Stockholm University,
Sweden.

t
h

e
 a

u
t

h
o

r
s

ISSN 0014-0171
284 23-3333 | Uen

© Ericsson AB 2019
Ericsson
SE-164 83 Stockholm, Sweden
Phone: +46 10 719 0000

