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Federated learning makes it possible to train machine learning models 
without transferring potentially sensitive user data from devices or local 
deployments to a central server. As such, it addresses privacy concerns  
at the same time that it improves functionality. Depending on the complexity 
of the neural network, it can also dramatically reduce the amount of data 
needed while training a model.
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Reliance on artificial intelligence (AI) and 
automation solutions is growing rapidly in the 
telecom industry as network complexity 
continues to expand. The machine learning 
(ML) models that many mobile network 
operators (MNOs) use to predict and solve 
issues before they affect user QoE are just 
one example. 
   
■ An important aspect of the 5G evolution is the 
transformation of engineered networks into  
continuous learning networks in which self-
adapting, scalable and intelligent agents can work 
independently to continuously improve quality and 
performance. These emerging “zero-touch 
networks” are, and will continue to be, heavily 
dependent on ML models.

The real-world performance of any ML model 
depends on the relevance of the data used to train it. 

Conventional ML models depend on the mass 
transfer of data from the devices or deployment sites 
to a central server to create a large, centralized 
dataset. Even in cases where the computation is 
decentralized, the training of conventional ML 
models still requires large, centralized datasets and 
misses out on using computational resources that 
may be available closer to where data is generated. 

While conventional ML delivers a high level of 
accuracy, it can be problematic from a data security 
perspective, due to legal restrictions and/or privacy 
concerns. Further, the transfer of so much data 
requires significant network resources, which means 
that lack of bandwidth and data transfer costs can be 
an issue in some situations. Even in cases where all 
the required data is available, reliance on a 
centralized dataset for maintenance and retraining 
purposes can be costly and time consuming.

For both privacy and efficiency reasons, Ericsson 

believes that the zero-touch networks of the future 
must be able to learn without needing to transfer 
voluminous amounts of data, perform centralized 
computation and/or risk exposing sensitive 
information. Federated learning (FL), with its ability 
to do ML in a decentralized manner, is a promising 
approach.

To better understand the potential of FL in a 
telecom environment, we have tested it in a number 
of use cases, migrating the models from 
conventional, centralized ML to FL, using the 
accuracy of the original model as a baseline. Our 
research indicates that the usage of a simple neural 
network yields a significant reduction in network 
utilization, due to the sharp drop in the amount of 
data that needs to be shared.

As part of our work, we have also identified the 
properties necessary to create an FL framework that 
can achieve the high scalability and fault tolerance 
required to sustain several FL tasks in parallel. 
Another important aspect of our work in this area 
has been figuring out how to transfer an ML model 

that addresses a specific and common problem, 
pretrained within an FL mechanism on existing 
network nodes to newly joined network nodes, so 
that they too can benefit from what has been learned 
previously.

The concept of federated learning
The core concept behind FL is to train a centralized 
model on decentralized data that never leaves the 
local data center that generated it. Rather than 
transferring “the data to the computation,” FL 
transfers “the computation to the data.”[1] 

In its simplest form, an FL framework makes use 
of neural networks, trained locally as close as 
possible to where the data is generated/collected. 
Such initial models are distributed to several data 
sources and trained in parallel. Once trained, the 
weights of all neurons of the neural network are 
transported to a central data center, where federated 
averaging takes place and a new model is produced 
and communicated back to all the remote neural 
networks that contributed to its creation.  
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Terms and abbreviations
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Figure 2 illustrates the basic system design.  
A federation is treated as a task run-to-completion, 
enabling a single resource definition of all 
parameters of the federation that is later deployed to 
different cloud-native environments. The resource 
definition for the task deals both with variant and 
invariant parts of the federation. 

The variant parts handle the characteristics of the 
FL model and its hyperparameters. The invariant 
parts handle the specifics of common components 
that can be reused by different FL tasks. Invariant 
parts include a message queue, the master of the FL 
task and the workers to be deployed and federated in 
different data centers. 

Workers (processes running in local deployments) 
are tightly coupled with the underlying ML platform 
that is used to train the model, which is immutable 
during the federation. In our FL experiments, we 
selected TensorFlow to train the neural network, 
which is designed to be interchangeable with other 
ML platforms such as PyTorch. Communication 
between the master and the workers is protected 
using Transport Layer Security encryption with 
one-time generated public/private keys that are 
discarded as soon as an FL task is completed. 

 Invariant components can be reused by different 
FL tasks. FL tasks can run sequentially or in parallel 
depending on the availability of resources. Master 

and worker processes are implemented as stateless 
components. This design choice leads to a more 
robust framework, since it allows for an FL task to 
fail without affecting other ongoing FL tasks. 

Fault tolerance 
To reduce the complexity of the codebase for both 
the master of the FL task and the workers and to 
keep our implementation stateless, we chose a 
message bus to be the single point of failure in the 
design of our FL framework. This design choice is 
further motivated by the research into creating 
highly scalable and fault-tolerant message buses by 
combining leader-election techniques and/or by 
relying on persistent storage to maintain the state of 
the message queue in case of a failure [4]. 

The message exchange between the master of the 
FL task and the workers is implemented in the form 
of assigned tasks such as “compute new weights” and 
“average weights.” Each task is pushed into the 
message queue and has a direct recipient. The 
recipient must acknowledge that it has received the 
task. If the acknowledgement is not made, the task 
remains in the queue. In case of a failure, messages 
remain in the message queue while Kubernetes 
restarts the failed process. Once the process reaches 
a running state again, the message queue 
retransmits any unacknowledged tasks. 

Techniques such as secure aggregation [2] and 
differential privacy [3] can be applied to further 
ensure the privacy and anonymity of the data origin.

FL can be used to test and train not only on 
smartphones and tablets, but on all types of devices. 
This makes it possible for self-driving cars to train on 
aggregated real-world driver behavior, for example, 
and hospitals to improve diagnostics without 
breaching the privacy of their patients. 

Figure 1 illustrates the basic architecture of an FL 
life cycle. The light blue dashed lines indicate that 
only the aggregated weights are sent to the global 
data lake, as opposed to the local data itself, as is the 
case in conventional ML models. As a result, FL 
makes it possible to achieve better utilization of 
resources, minimize data transfer and preserve the 
privacy of those whose information is being 
exchanged.

The main challenge with an FL approach is that 
the transition from training a conventional ML 

model using a centralized dataset to several smaller 
federated ones may introduce a bias that impacts the 
accuracy originally achieved by using a centralized 
dataset. The risk for this is greatest in less reliable 
and more ephemeral federations that span over to 
mobile devices. 

It is reasonable to expect data centers used by 
MNOs to be significantly more reliable than devices 
in terms of data storage, computational resources 
and general availability. However, it is important to 
ensure high fault tolerance, as corresponding 
processes may still fail due to lack of resources, 
software bugs or other issues. 

Federated learning framework design
Our FL framework design concept is cloud-native, 
built on a federation of Kubernetes-based data 
centers located in different parts of the world.  
We assume restricted access to allow for the 
execution of certain processes that are vital to FL. 

Figure 2  Basic design of an FL platform  
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Preventive maintenance use case
Hardware fault prediction is a typical ML use case 
for an MNO. In this case, the aim is to predict 
whether there will be a hardware fault at a radio unit 
within the next seven days based on data generated 
in the eight-week interval preceding the prediction 
time. The inputs to the ML model consist of more 
than 500 features that are aggregations of multiple 
performance management counters, fault 
management data such as alarms, weather data and 
the date/time since the hardware has been active in 
the field. 

Three training scenarios 
We performed the experiments in three scenarios – 
centralized ML, isolated ML and FL. 

Centralized ML is the benchmark scenario. The 
datasets from all four worker nodes are transferred 
to one master node, and model training is performed 
there. The trained model is then transferred and 
deployed back to the four worker nodes for inference. 
In this scenario, all worker nodes use exactly the 
same pretrained ML model. 

In the isolated ML scenario, no data is transferred 
from the worker nodes to a master node. Instead, 
each worker node trains on its own dataset and 
operates independently from the others.

In the FL scenario, the worker nodes train on their 
individual datasets and share the learned weights 
from the neural network model via the message 
queue. The saturation of the model accuracies is 
achieved after 15 rounds of the weight-sharing and 
weight-averaging procedure. In this way, the worker 
nodes can learn from each other without transferring 
their datasets.

The properties of each training scenario are 
summarized in Figure 3, Table A. 

Accuracy results 
Table B in Figure 3 presents the results in the form of 
median ROC AUC (receiver operating characteristic 
area under the curve) scores obtained through more 
than 100 independent experiments. The scores 
achieved in the FL scenario are similar to those 
achieved in the centralized and isolated ones, while 
the variance of the FL scores is significantly lower 
compared with the other two scenarios. 

The results in Table B show that it is worker 1 
(south) that benefits from FL. They also suggest that 
an isolated ML approach can be recommended in 
cases where the individual datasets have enough 
data for training. The only drawback is that because 
the isolated nodes never receive any information 
from other nodes, they will be more conservative in 
their response to changes in the data, with the risk of 
potentially higher blind spots in the individual 
datasets. 

The impact of adding new workers
To facilitate the adding of new workers at a later time, 
information about the current round must be 
maintained in the message exchange between the 
master and the workers. When an FL task starts, all 
workers register to round ID 0, which triggers the 
master to initialize the random weights and 
broadcast the same distribution to all workers. All 
workers train in parallel and contribute to the same 
training round. As the rounds increase, the federated 
model’s maturity increases until a saturation point is 
reached. 

If the current round ID is greater than 0, the master 
is aware that the process of averaging of weights  
has taken place at least once, which means that the 
model is not at a random initial state. When a new 
worker joins the FL task, it sends its round ID as 0. 

Figure 3  Tables relating to the hardware fault prediction use case 

Centralized Isolated Federated

Centralized median (std) Isolated median (std) Federated median (std)

Downlink consumption Uplink consumption

NoPrivacy preserved

Use of overall data

Data transfer cost

Weight transfer cost

Yes Yes

0.91 (0.15)Worker 1 (region 1) 0.89 (0.12) 0.95 (0.05)

0.92 (0.8)Worker 2 (region 2) 0.93 (0.08) 0.93 (0.03)

0.95 (0.16)Worker 3 (region 3) 0.95 (0.13) 0.97 (0.07)

0.97 (0.13)Worker 4 (region 4) 0.97 (0.11) 0.96 (0.05)

0.93 (0.13)Overall 0.93 (0.11) 0.95 (0.05)

Federated (MB)Centralized (MB)

Table D – Network footprint

Table C – Network footprint formulas for each training scenario

Table B – ROC AUC scores of workers throughout three scenarios

Table A – Summary of scenario definitions 

FL message size (MB) Rounds Rounds

Master 0 0

Worker ID 0 0

Master N * R * Model₀ N * R * Model₀

Worker ID R * Model₀ R * Model₀

i: worker ID 
N: number of workers 

R: number of rounds needed until accuracy convergence 
Model₀: Size of ML model 

n
i
: size of dataset in worker ID 

Worker ID Model₀ n
i

Master
Centralized ML

Isolated ML

FL

∑ N * Model₀
N 

i=0

n
i

Yes No Yes

High None None

None None Low

Workers

19.22,000 0.26 15 4
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of message exchanges is equal to the number of 
regions where the compressed version of the dataset 
is transferred – that is, the number of local 
deployments. 

In FL, on the other hand, there are multiple 
message exchanges that consist of rounds, which 
refers to the number of training phases required 
until the accuracy of the model converges. Message 
size in FL is determined by the serialized vector that 
contains the neural weights, which is directly related 
to the size of the neural network. 

Table D in Figure 3 presents the network footprint 
results for the preventive maintenance use case, 
showing that the FL approach yielded a one order of 
magnitude reduction in data volume compared with 
the centralized approach – a drop from 2,000MB to 
19.2MB. This dramatic reduction can be attributed 
to the simplicity of the neural network and the 
substantially smaller amount of data that needs to be 
transferred in the FL scenario. In the long term, this 
significantly smaller network footprint will enable 
the creation of a more complex neural network with 
the ability to detect more complex patterns in the 
dataset. 

Conclusion
While conventional machine learning (ML) models 
provide many benefits to mobile network operators, 
particularly in terms of ensuring consistent QoE, the 
large data transfer that they require results in a 
substantial network footprint and can lead to privacy 
issues. By bringing “the computation to the data” 
instead of transferring “the data to the computation,” 
federated learning (FL) makes it possible to 
overcome those challenges by training a centralized 
model on decentralized data.

Ericsson’s research in this area has demonstrated 
that it is possible to migrate from a conventional ML 
model (trained using a completely centralized 
dataset) to a federated one, significantly reducing 
data transfer and protecting privacy while achieving 
on-par accuracy. In light of our findings, we believe 
that FL has an important role to play in the ongoing 
automation of the telecom sector and in the 
transition to the zero-touch networks of the future.

The master, whose latest round ID is greater than 0, 
recognizes the worker as new and immediately 
shares the latest state of the model with the new 
worker after the first handshake. 
Figure 4 illustrates how accuracy persists in the FL 
model when a new worker joins. In this example, 
three workers numbered 0, 1 and 2 contribute to the 
initial training phase of the model, receive the same 
randomized weight matrices from the master node, 
and train on the same model. As time passes, 
accuracy reaches a saturation point. Later, worker 3 

joins the FL task. However, since worker 3 is at its 
first round, it is allowed to use the saturated model, 
but not allowed to contribute in the weight 
aggregation. Instead, its weights are discarded. 

 
Network footprint comparison
Table C in Figure 3 presents a set of formulas that 
can be used to determine the network footprint for 
centralized ML, isolated ML and FL scenarios. 
When training an ML model in a conventional way 
(as in centralized ML), it is assumed that the number 

Figure 4  AUC scores before and after a new worker joins the FL task
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