
Cloud
native

Culture

OrganizationArchitecture

Automation

ERICSSON
TECHNOLOGY

CLOUD-NATIVE
APPLICATION
DESIGN

C H A R T I N G T H E F U T U R E O F I N N O V A T I O N | # 0 5 ∙ 2 0 1 9

✱ CLOUD-NATIVE APPLICATION DESIGN

2 E R I C S S O N T E C H N O L O G Y R E V I E W ✱ J U N E 5 , 2 0 1 9

Cloud-native application design is set to become common practice in the
telecom industry in the next few years due to the major efficiency gains that
it can provide, particularly in terms of speeding up software upgrades and
releases.

HENRIK SAAVEDRA
PERSSON,
HOSSEIN K ASSAEI

The cloud-native paradigm is driving the
transformation of virtual network functions
into cloud-native applications (CNAs) that
can be commercialized and offered according
to either as-a-service (aaS) or as-a-product
(aaP) models. In either case, the goal is to
provide a seamless and secure deployment,
monitoring and operations experience by
applying a very high degree of automation.

■ To ease the transition to the cloud-native approach,
Ericsson has created an application development
framework that provides a set of architecture
principles, design rules and best practices that guide
the fundamental design decisions for all of our CNAs.

Our framework leverages web-scale technology
from the Cloud Native Computing Foundation
(CNCF) and other open-source projects while
taking into consideration the particular challenges
of production-grade telecom applications.

The CNCF is an open-source software foundation
whose stated purpose is to make cloud-native
computing ‘universal and sustainable.’ It fosters
collaboration between the industry’s top developers,
end users, and vendors, serving as the vendor-neutral
home for many of the fastest-growing projects on
GitHub, including Kubernetes, Prometheus and
Envoy. CNCF technology has played an important
role in our efforts to develop and refine our approach
to CNA design.

IN THE TELECOM DOMAIN

Cloud-native
application

design

CLOUD-NATIVE APPLICATION DESIGN ✱

J U N E 5 , 2 0 1 9 ✱ E R I C S S O N T E C H N O L O G Y R E V I E W 3

Figure 1 illustrates the four pillars of the
cloud-native paradigm. Our framework addresses
three of them: automation, architecture and culture.
Automation is an integral part of the framework,
which takes a CI/CD (Continuous Integration,
Continuous Delivery) approach to application
development and delivery. Architecturally,
the framework provides the software assets/
components that enable applications to fulfill key
design principles [1]. Culturally, it promotes

collaboration with the open-source community,
as using and contributing to the relevant open-
source software projects (typically within CNCF)
is at the heart of our implementation strategy.

Our application development framework
Our framework establishes a set of principles for
telecom applications based on microservices,
containers and state-optimized design. It provides a
set of best practices, design rules and guidelines on

Terms and abbreviations
AAP – As-a-Product | AAS – As-a-Service | ACID – Atomicity, Consistency, Isolation, and Durability |
CAP – Consistency, Availability and Partition Tolerance | CAT – Configuration Assessment Tool |
CI/CD&D – Continuous Integration, Continuous Delivery and Deployment | CIS – The Center for
Internet Security | CNA – Cloud-native Application | CNCF – Cloud Native Computing Foundation |
DR – Design Rule | ETSI – European Telecommunications Standards Institute | MSA – Microservice
Architecture | NIST – National Institute of Standards and Technology | UI – User Interface

Figure 1 The four pillars of the cloud-native paradigm

Cloud
native

Culture

OrganizationArchitecture

Automation

✱ CLOUD-NATIVE APPLICATION DESIGN

4 E R I C S S O N T E C H N O L O G Y R E V I E W ✱ J U N E 5 , 2 0 1 9

how to build CNAs based on microservice architecture
(MSA), as well as guidance on how to deploy, monitor
and operate them based on DevOps principles.

With the support of our framework, it is possible
to build telecom applications that use CNCF
technology through a highly modular architecture
and clear separation of concerns. The framework
helps us drive alignment across all Ericsson CNAs,
ensuring that we address key concerns in a common,
generic way. The consistent life-cycle management,
operation and maintenance that result from this
approach enhance the customer experience.
Figure 2 provides a high-level picture of what the
framework offers.

Designing cloud-native applications
Ericsson CNAs are built as a set of loosely coupled
(micro)services with well-defined, bounded contexts
and individual life cycles. Each microservice is
packaged and delivered as one or more containers,
independent from other microservices, and provides
well-defined and version-controlled application

programming interfaces exposed over the network.
To achieve full portability across various

infrastructures, CNAs rely on Kubernetes as the
choice of container orchestration platform and can
be deployed on any certified Kubernetes
distribution [2] with a minimum version adhering to
the company’s security and stability requirements.

All Ericsson CNAs are fully verified on Ericsson
Kubernetes distribution. Our CNAs rely on
Kubernetes for the automatic placement, auto-
scaling, upgrade and auto-healing of individual
services. On top of making use of Kubernetes, we
also contribute features back to Kubernetes that
make it a better fit for telco-grade deployments. IPv6
is just one example of an important area within the
telecom domain that has not yet received enough
attention within the community.

Observability, security and persistence
Observability is a prerequisite for seamless CNA
monitoring and operations. The CNCF landscape [3]
includes several very good candidates to help collect,

Figure 2 Key components of Ericsson’s application development framework

Application-specific services

1

3

4
2

Application development & onboarding environment

Any hardware

Data
services

Security
services

Network
services

Management
services

Monitoring
services

Application
& service

management

Kubernetes-
based reference
container platform

Management
stack

Generic
services

Cloud
platform

Management &
orchestration
functionality for
services and
applications

Common (platform
type/generic)
services for reuse
across applications

Application &
service
development and
onboarding
environment, tools,
DRs and interface
to CI/CD

4

3

1

2

Any Kubernetes cloud platform

CLOUD-NATIVE APPLICATION DESIGN ✱

J U N E 5 , 2 0 1 9 ✱ E R I C S S O N T E C H N O L O G Y R E V I E W 5

store and visualize logs, metrics, traces and other
data points, such as Prometheus, Fluentd, Elastic
Stack, Jaeger and Grafana.

Security is a vital component of cloud-native
development. On top of adhering to the best
practices and guidelines provided by prominent
organizations such as CIS (The Center for Internet
Security) and NIST (the National Institute of
Standards and Technology), open-source software
projects such as Keycloak and HashiCorp Vault can
help CNAs deal with storage and provisioning, as
well as the handling of identities, certificates and keys.

To break down and implement business logic
using stateless microservices, CNAs typically need
to rely on stateful backing services to store their data.
The type of stateful backing service that is required
depends on various factors, such as the type and
format of the data (such as structured or
unstructured), the amount of data, the intensity
of read and write operations, CAP and ACID
properties, and so on. A multitude of open-source
projects aims to address these needs, including

database technologies such as PostgreSQL, MariaDB,
Couchbase, Redis, MongoDB, Cassandra, MySQL
and Hadoop.

The design philosophy behind Ericsson CNAs is
to use polyglot persistence [4] while taking into
account the total footprint and avoiding technology
sprawl. Achieving the latter requires the identification
of the most important properties that enable
classification of database engine types into distinct
groups and adopting a slightly opinionated approach
in selecting one or a few choices in each group.

Continuous Integration, Continuous Delivery
and Deployment
Our framework provides tools, interfaces and design
rules that enable microservices to benefit from a fully
automated Continuous Integration, Continuous
Delivery and Deployment (CI/CD&D) pipeline, as
illustrated in Figure 3. The pipeline is triggered from
the moment code is committed and takes the new
“candidate release” through the full cycle of build,
verification, packaging and release. The deployment

Figure 3 Fully automated CI/CD&D

Ericsson Customer

2

1

3

4

56

Software distribution
Continuous

releases

Continuous
integration

Software
upgrades

Acceptance
tests

Data collection

Feedback0

Automated
software

distribution

Automated
acceptance

test

Automated
software

deployment

Automated data
collection and

analysis

Network CI
for ”systems
of systems”

Automated
release

machinery

✱ CLOUD-NATIVE APPLICATION DESIGN

6 E R I C S S O N T E C H N O L O G Y R E V I E W ✱ J U N E 5 , 2 0 1 9

phase will be somewhat different for aaS and aaP
models. To get the full benefit from cloud native in an
aaP approach, the end-to-end pipeline should be
fully automated, connecting Ericsson with the
customer to allow continuous feedback from live
deployments to development teams.

Software reuse and open-source projects
While the goal of large-scale software reuse and
utilization of open-source projects existed well
before the emergence of the cloud-native paradigm
and MSA, it is much more likely to be achieved now.
This is because container technology isolates the
different services from each other to a very high
degree. Instead of being exposed to all the
dependencies of each service, the exposure is limited
to the interface needed by the user of the service.

Strict backward-compatibility of the exposed
interfaces is required to achieve loose coupling and
make it possible for each service to evolve
independently. At the same time, semantic
versioning on the interfaces creates a common way
to communicate the evolution of the interfaces.

The CNCF provides a new starting point when
looking for reuse opportunities from a cloud-native
and MSA perspective. It adds value by creating a
structure, choosing relevant open-source projects,
and ensuring overall quality and community
acceptance. It also provides a comprehensive map of
potential realizations for different areas.

Key architectural aspects to consider
Making the right selection between the various
CNCF and other open-source projects that are
available requires a clear view of the context and the
kind of use cases a selected service must support.
Having a clearly defined architecture – with set
goals, principles, design rules and guidelines – is

more important than ever before in this situation
because it helps to determine the different service
and functional needs.

Following this approach, it is possible to
disconnect the definition of which use cases are to be
provided for within a particular area (and what
additional principles would apply) from a particular
realization. The benefit of this is that the architecture
itself is not compromised or influenced by the need
to support particular use cases (or not). For example,
in the case of service mesh, this approach makes it
possible to identify the core functional use cases that
would add value to the architecture for CNAs,
without being influenced by realizations like Istio
and Linkerd.

Using identified use cases when considering
different potential realizations both within and
outside of CNCF enables a direct comparison when
looking at the compliance to these use cases. This
approach allows for reevaluation of previous
selections for whatever reason. From an architecture
evolution perspective, it is equally important to
update identified use cases as soon as new needs
arise, which may in turn lead to a new realization
selection.

Separation of concerns
Separation of concerns is an important architectural
principle that increases the possibility to reuse
CNCF and other open-source projects even for very
domain-specific use cases. In this context,
separation of concerns means that the internal
representation of the data should be separated from
external representation. This approach makes it
possible to apply cloud-native approaches in areas
that were driven by purely proprietary
implementations in the past.

Demonstrating the additional benefit and the
potentially richer feature set offered by these
projects provides an opportunity to influence and
evolve expectations within the telecom domain.
The ongoing evolution of ONAP (the Open Network
Automation Platform) and support for high volume
stream data collection is one example of this.

 EXPOSURE IS LIMITED TO
THE INTERFACE NEEDED BY
THE USER OF THE SERVICE

CLOUD-NATIVE APPLICATION DESIGN ✱

J U N E 5 , 2 0 1 9 ✱ E R I C S S O N T E C H N O L O G Y R E V I E W 7

It is rare for out-of-the-box solutions from CNCF
and other open-source projects to be sufficient to
meet the needs of many telecom-specific use cases
related to 3GPP, ETSI and other telecom-defined
interfaces. There is, however, an obvious benefit to
minimizing in-house development of the additions
by building them as modular services on top of an
available open-source project, when one exists in the
relevant area. Realizations that are relatively generic
and provide backward-compatible and version-
controlled interfaces are preferred because they
make it possible to build extensions in a future-proof
way.

An example of this approach would be to choose
Prometheus as the performance management
infrastructure and use its interfaces to consume
metrics and build additional support to expose
3GPP-compliant metric report files.

The question of maturity
Another important factor to consider when selecting
an open-source project is maturity. This can be
measured in terms of the size of the project’s
community and the number of releases it has that
include backward-compatible changes. Selecting a
mature project that is fully compliant with the use
cases you have in mind would make it possible to
take a passive role in the project, simply using the
releases as they become available and focusing on
building internal competence. Choosing a less
mature project that is not fully compliant with your
use cases would require you to adopt an active role in
the community to influence both how backward-
compatibility is managed and the direction of feature
evolution in the future.

In either case, it should be noted that using open-
source software is not free – it is important to build
up internal knowledge related to the software,
especially around the needed use cases. It is not an
option to be dependent on the community for all
support-related questions, particularly when taking
on an active role.

Be aware that, during the project selection
process, it will typically only be possible to get a

snapshot view of how the project handles the critical
issues of backward-compatibility on exposed
interfaces and semantic versioning. While a project
with a longer history should be able to provide a
better picture, it still might not be able to offer a
complete one. Kafka is an example of a relatively
mature project in which changes that broke
backward-compatibility (according to our definition)
were announced as a minor update in the release,
rather than a major release.

Weighing integration potential
against best-of-breed
In several cases, open-source projects have been
created with a very different context in mind than
the one in which they are later used within a defined
architecture – particularly in terms of deployment
footprint and characteristics aspects. For example, a
project may decide to use one or two specific data
stores for persistent data, which, given the bigger
picture of the CNA architecture, may not be natural
fits.

Sometimes a choice like this is made with an aaS
context in mind, where a service is deployed once
and reused by everyone, as opposed to an aaP
context, where a CNA typically needs to be more
self-contained and provide its own instances of all
services. One example of this is Harbor, a project
that has an opinionated selection of both data store
and ingress. In many cases, these sorts of issues can
be addressed by configuration or influencing the
project, but sometimes they lead to a different
selection of realization.

As each open-source project is typically
independent, functionality overlap is common,

 IT IS IMPORTANT TO BUILD
UP INTERNAL KNOWLEDGE
RELATED TO THE SOFTWARE,
ESPECIALLY AROUND THE
NEEDED USE CASES

✱ CLOUD-NATIVE APPLICATION DESIGN

8 E R I C S S O N T E C H N O L O G Y R E V I E W ✱ J U N E 5 , 2 0 1 9

and there can sometimes be contradicting views
about how particular problems should be solved.
While each project can typically provide value
within the scope it was designed for, the broader
architectural perspective requires the provision of
end-to-end value without compromising defined
goals and principles. A key aspect of this is figuring
out how different projects can be integrated and
used in combination to provide greater value.

In light of this, it is important to keep in mind that
even though a specific open-source project may be
considered best-of-breed, it might not fit well into the
full end-to-end value that the larger architecture
intends to provide. In this case, it might make more
sense to select a less capable project that is a better fit
with the overall architectural goals.

For example, existing best-of-breed projects
would not be the right choice to build a cohesive, fully
integrated visualization solution to provide a high-
level view of microservices and their health status,
metrics, logs, distributed traces and other artifacts
needed for monitoring in a DevOps team. Bundling
best-of-breed standalone user interfaces (UIs) such
as Grafana for metrics, Kibana for logs, a Jaeger UI
for traces and Kubernetes UI for workload
monitoring would result in very poor usability and a
sub-optimal experience for Ops teams.

Shared responsibility for security
Certain aspects of security are expected to be
covered by open-source projects, while others
remain the full responsibility of the development
organization. For instance, when it comes to
securing communication, there is typically an
aligned approach within both the enterprise and
telecom domain. This is centered around TLS and
OAuth2, especially looking at the evolution of 3GPP,

which is moving to web-scale technology protocols
like HTTP/2. When this level of security is not
provided by the open-source project, it is typically
seen as a valid evolution of the project. In some
scenarios, though, due to timing or conflict between
free and commercial versions of the project, the
mitigation is to deploy a proxy in front of the service
to address security aspects – albeit at the cost of
introducing additional latency.

The model for using open-source software is to
bring in the source code – even if pre-baked
container images are provided by some projects –
and build container images, including the selection
of the base operating system image. Because of this,
security hardening must be fully controlled by the
team. There are standard testing tools such as CIS-
CAT (the CIS configuration assessment tool) that
help teams evaluate the quality of the hardening they
have performed. Such reports can also be used to
assure customers of the overall security compliance.

Key organizational and cultural aspects
to consider
Speed is the driving force in the cloud-native
paradigm, which means that the goal is to streamline
the work process as much as possible. Every task that
cannot be automated or cut out inhibits the
organization’s ability to benefit from the cloud-native
approach. Moving to the cloud-native paradigm and
making use of MSA is therefore much more than just
a technological change in how software is built. A
number of important organizational and cultural
changes must take place to achieve the benefits.

A cloud-native development organization is often
structured around architecture and processes.
When the need to create a service has been
identified, a small team forms to take full
responsibility and accountability for that service
across all stages of the software life cycle, according
to DevOps principles. This structure stands in stark
contrast to the traditional one, in which bigger teams
typically work on larger software projects alongside
teams with dedicated responsibility for horizontal
tasks such as release and compliance handling.

 DIFFERENT PROJECTS
CAN BE INTEGRATED AND USED
IN COMBINATION TO PROVIDE
GREATER VALUE

CLOUD-NATIVE APPLICATION DESIGN ✱

J U N E 5 , 2 0 1 9 ✱ E R I C S S O N T E C H N O L O G Y R E V I E W 9

Moving from a more traditional software release
cycle of every three to six months to much more
frequent releases requires both a higher level of
automation of the process and a reduction in the
number of activities/tasks needed as part of a
release. In short, anything that can be automated
must be automated, and a few tasks, such as trade
compliance, that cannot be automated must be
simplified.

Building trust and acceptance
Developers do not have full control when they work
with open-source code. This can lead to trust issues,
particularly in organizations that have a history of
working with proprietary implementations. Even
when there is a buy-in from developers on the
decision to use open-source code, it is often
necessary to build trust and acceptance within the
organization for the fact that open-source code can
do as good a job of fulfilling requirements as code
that is developed in-house.

The best way to back up the decision to use open-
source code is to demonstrate that there is a solid
selection process in place along with clear mapping
of architecture use cases. From a business point of
view, it is important to emphasize that the cost of
developing commoditized software is simply not
justifiable: selecting open-source software that
meets the criteria to a sufficient degree is preferable
to creating similar software from scratch.

Regardless of whether a service is based on open-
source code or a proprietary implementation, the
team structure and the responsibility must be the
same. Constant validation of the open-source
project is crucial for early detection of any potential
issues relating to backward-compatibility.

In-house talent is crucial to the successful use of
open-source code. Internal competence building is
as important for open-source based work as it is for
proprietary implementations, both for
troubleshooting purposes and to understand
evolution needs.

Conclusion
Cloud-native application design will soon become
the telecom domain’s new standard for the
development of virtual network functions. Ericsson
is well prepared for this transition, thanks to our
application development framework, which uses
cloud-native principles, microservice architecture
and several key enabling technologies such as
containers and Kubernetes.

To fully benefit from the cloud-native paradigm,
speed cannot be compromised. Technological and
architectural changes are not enough – transitioning
toward the cloud-native paradigm requires major
organizational and cultural changes as well.

Achieving the necessary speed requires smaller
team setups with full DevOps responsibility and
(full) automation of any step that is required as part
of the software CI/CD&D and release process. One
of the main organizational challenges is to get the
developers to let go of full control and trust the use
of open source in areas where in-house development
has been used in the past.

 TO FULLY BENEFIT
FROM THE CLOUD-NATIVE
PARADIGM, SPEED CANNOT
BE COMPROMISED

✱ CLOUD-NATIVE APPLICATION DESIGN

10 E R I C S S O N T E C H N O L O G Y R E V I E W ✱ J U N E 5 , 2 0 1 9

Further reading
❭ CNCF, Sustaining and integrating open source technologies, available at: https://www.cncf.io/

References
1. Ericsson, Cloud-native applications, available at: https://www.ericsson.com/en/digital-services/trending/

cloud-native

2. CNCF, Certified Kubernetes, available at: https://www.cncf.io/certification/software-conformance/

3. GitHub, CNCF landscape, available at: https://github.com/cncf/landscape

4. Martinfowler.com, PolyglotPersistence, November 16, 2011, available at: https://martinfowler.com/bliki/
PolyglotPersistence.html

Henrik Saavedra
Persson
◆ is an expert at Business
Area Digital Services, where
he drives the common
cloud-native architecture
for the business area’s
virtual network functions
and applications in his role
as chief architect of the

application development
framework. He joined
Ericsson in 2004 and
has worked in R&D with
architecture for both
applications and platform
products. Saavedra Persson
holds an M.Sc. in software
engineering from Blekinge
Institute of Technology in
Sweden.

Hossein Kassaei
◆ is a technology specialist
in cloud computing and
MSA within Business Area
Digital Services, where he
has worked on common
platforms and application

architectures for the past
five years. He joined Ericsson
in 2010 and has worked in
various roles within R&D
from developer, to software
designer, to architect and
DevOps lead. He holds an
M.Sc. in computer science
from Concordia University in
Montreal, Canada.

t
h

e
 a

u
t

h
o

r
s

The authors would
like to thank
Mario Angelic
for his contribution
to this article.

https://www.cncf.io/
https://www.ericsson.com/en/digital-services/trending/cloud-native
https://www.ericsson.com/en/digital-services/trending/cloud-native
https://www.cncf.io/certification/software-conformance/
https://github.com/cncf/landscape
https://martinfowler.com/bliki/PolyglotPersistence.html
https://martinfowler.com/bliki/PolyglotPersistence.html

ISSN 0014-0171
284 23-3329 | Uen

© Ericsson AB 2019
Ericsson
SE-164 83 Stockholm, Sweden
Phone: +46 10 719 0000

