Advanced POL module enables designers to achieve high performance without compromising on dynamic response. First auto-compensated digital point-of-load regulator is based on ‘state-space’ or ‘model-predictive’ control, reducing cost and time-to-market while increasing flexibility. Land-grid-array footprint improves quality, reliability and manufacturability. Low bias current contributes to higher efficiency.

Ericsson has introduced a new 3E* DC-DC regulator, the BMR461, that is the first 12 x 12 x 8mm 12A digital point-of-load (POL) module to combine Dynamic Loop Compensation (DLC), low-bias current technology, advanced energy-optimization algorithms to reduce energy consumption, and a land-grid-array (LGA) footprint that guarantees excellent thermal, mechanical and electrical performance.

The new BMR461 Dynamic Loop Compensation is based on ‘state-space’ or ‘model-predictive’ control, which guarantees stability while also achieving the optimum dynamic performance without requiring any external components. The new product performs an automatic compensation routine that is based on measured parameters, which enables the construction of an internal mathematical model of the power supply including external components such as filtering and parasitic resistors.

"The Dynamic Loop Compensation circuitry built into the BMR461 negates the requirement for external components such as RC networks to adjust control loop compensation parameters," said Patrick Le Fèvre, Marketing and Communication Director, Ericsson Power Modules. "As some board designs will employ 30 or even more 12A POL regulators, the BMR461 will significantly simplify the design and maintenance process for power designers. Furthermore, when considering the board-space and time that is usually required for conventional technology to test and verify loop-stability of each module, the BMR461 represents significant savings both in terms of cost and time while also improving reliability."

The BMR461 features several algorithms that optimize efficiency across a wide range of operating conditions. Compared to the conventional technology that is currently implemented in analog and digital-hybrid POL regulators, the device’s combination of energy optimization algorithms and low bias technology requires up to five times lower current, and therefore further improving overall efficiency.

* 3E stands for: Enhanced Performance, Energy Management, and End-user Value.